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Abstract—OpenMP provides a cross-vendor API for GPU
offload that can serve as an implementation layer under perfor-
mance portability frameworks like the Kokkos C++ library. How-
ever, recent work identified some impediments to performance
with this approach arising from limitations in the API or in
the available implementations. Advanced programming concepts
such as hierarchical parallelism and use of dynamic shared
memory were a particular area of concern. In this paper, we
apply recent improvements and extensions in the LLVM/Clang
OpenMP compiler and runtime library to the Kokkos backend
that targets GPUs via OpenMP offload. We focus on efficient
hierarchical parallelism and use of fast GPU scratch memory.
We compare the performance of applications written using the
Kokkos library with this improved OpenMP backend against
the same programs using the CUDA and HIP backends. This
evaluation shows progress toward closing the performance gaps
between native and OpenMP backends and offers insights that
may be useful to users and implementers of other runtime
systems and programming frameworks for GPUs.

Index Terms—Computing methodologies → Parallel program-
ming languages → Kokkos, OpenMP, CUDA, HIP

I. INTRODUCTION

Kokkos is a performance portability library that allows a
single C++ code base to efficiently execute on diverse GPUs
and CPUs [1]. Many scientific applications, especially those
developed via the United States Exascale Computing Project
(ECP), use it as a programming model. The Linux Foundation
assumed ownership of Kokkos to ensure lasting sustainability.

While the front end interface of Kokkos is modern ISO
standard C++, its implementation provides several different
backends depending on the target architecture. Backends using
the vendor preferred programming models (NVIDIA’s CUDA,
AMD’s HIP, and Intel’s DPC++ dialect of SYCL) provide
the best performance on each vendor’s hardware. However,
vendor preferred programming models are poorly supported,
if at all, on the other vendors’ hardware. OpenMP’s device
offload model [2] provides an alternative to vendor preferred
programming model backends of Kokkos. The OpenMP API

enjoys broad compiler support, including GCC, Clang/LLVM,
and vendor implementations (many of which are based on
LLVM). Kokkos includes one backend for OpenMP on host
CPUs only, and another with GPU support using the offload
model. The latter, which Kokkos refers to as the OpenMP-
Target backend, is the subject of this paper. For the rest of
the paper, whenever we refer to Kokkos-OMP backend, it is
specifically to the OpenMPTarget backend that targets GPUs.

Previous work investigated the performance of Kokkos-
OMP backend compared to the CUDA and HIP backends on
NVIDIA and AMD GPUs, respectively, in the context of a
conjugate gradient solver [3]. That study found that while
performance of single level parallelism was adequate, the
Kokkos-OMP backend handled hierarchical parallelism, e.g.,
sparse-matrix vector multiplication, poorly.

In this paper, we demonstrate improvements to the
Kokkos-OMP backend by integrating recent capabilities from
LLVM/OpenMP in the following new extensions:

• Support for GPU scratch memory (often referred to as
“shared” memory on NVIDIA GPUs or “Local Data Stor-
age (LDS)” on AMD GPUs), with a focus on dynamic
scratch memory allocation.

• Implementation of grid parallelism in OpenMP, analogous
to CUDA/HIP, along with comprehensive support for all
three levels of hierarchical parallelism.

• Integration of advanced reduction techniques, including
shuffle instructions in OpenMP.

We evaluate these improvements using Kokkos-based appli-
cations, comparing their performance against existing im-
plementations and vendor-preferred backends for each target
architecture.

The remainder of the paper is organized as follows. In
Section II and Section III we explain the motivation and
background for the work. Section IV discusses the extensions
to the LLVM/OpenMP ecosystem and how they are integrated
into the Kokkos framework, along with empirical results to



demonstrate performance impact. We discuss some related
works in Section V, and conclude the paper in Section VI.

II. MOTIVATION

Kokkos has native backends for all three major GPU
vendors, i.e., NVIDIA, AMD and Intel. The OpenMPTarget
backend is considered a secondary backend for the GPUs.
The motivation for a secondary backend is two-fold: 1) risk
mitigation, especially in scenarios where Kokkos applications
might need to interact with external libraries that use OpenMP
and 2) preparedness for any future hardware that relies on
OpenMP as its first or primary framework, so that applications
based on Kokkos can compile and run on such an architecture.

As a C++ framework, Kokkos templates its backend im-
plementation on vendor specific programming models such as
CUDA, HIP and SYCL. It also provides constructs to users
that may be unavailable even to the native backends such as
atomics on user defined data types. Providing implementation
for such involved and advance concepts using the OpenMP
offload directives provides a litmus test for the compiler im-
plementations and a proof of concept for C++ applications that
might consider OpenMP for their portable implementations.

Additionally, the OpenMPTarget backend enables interoper-
ability between OpenMP tooling infrastructure such as record
and replay [4] and advanced OpenMP features in LLVM such
as remote OpenMP offloading [5] and JIT compilation [6].

However, the performance of Kokkos applications using the
OpenMPTarget backend is typically slower than the native
backends. While compiler maturity is one of the reasons for
such slowdowns, a major contributor is also the lack of features
in the OpenMP standard to completely exploit the available
parallelism on a GPU. In our study, we aim to demonstrate
how OpenMP can compete against native backends through
small changes and extensions to OpenMP and efficient design
choices in the implementation of the API.

Our evaluation used NVIDIA A100 GPUs (40GB HBM)
available on NERSC Perlmutter located at Lawrence Berkeley
National Laboratory and AMD MI250X GPUs on OLCF
Frontier at Oak Ridge National Laboratory. For the CUDA
builds we used cuda/12.2 and for HIP we used rocm/6.0.

III. BACKGROUND

Kokkos enables developers to write a common code base
that can compile and run on multiple CPU and GPU architec-
tures with minimal changes. Fig. 1 shows its available back-
ends and supported architectures. Execution patterns such as
parallel_for and parallel_reduce are provided for
parallel iteration over loop ranges or items in a view (Kokkos
multidimensional array). The body of the loop is specified
as a C++ lambda. The parallelism may be flat or hierarchical.
This paper presents modifications to the implementation of the
execution patterns in one backend and hence user code changes
are not required to benefit from the optimizations described.

While OpenMP has been available since the late 1990’s for
CPUs, OpenMP GPU offload is a more recent development,
both in the API specification and in compiler implementations.

Kokkos code (templated on the choice of the backend but 
otherwise the same across all architectures)

OpenMP 
Host 

Backend

OpenMP 
Target 

Backend

CUDA 
Backend

HIP 
Backend

CPU NVIDIA GPU AMD GPU

SYCL 
Backend

Intel 
GPU

Fig. 1: Kokkos backends and supported architectures.

Level Kokkos CUDA OpenMP
Top teams block teams
Mid threads Y dim parallel
Low vector X dim simd

Fig. 2: Parallelism levels in Kokkos, CUDA, and OpenMP

The widely used parallel for directive creates a team
of threads that execute a loop in parallel. When used in
a target construct along with teams distribute for
GPU offload, it results in the creation of multiple teams spread
across the blocks of a GPU, wherein, each team has multiple
threads running in parallel.

Fig. 2 shows how OpenMP offload parallelism corresponds
to parallelism in Kokkos and CUDA. However, the mapping
does not indicate fully equivalent behavior. Firstly, below the
thread level, the simd directive can enable vector parallelism,
but this directive is commonly ignored by many compilers
when generating GPU code. Secondly, simple block and thread
indexing in grid languages like CUDA keeps overheads low,
in comparison to the more heavyweight state required by
OpenMP semantics. A major focus of the work described
in this paper is the adaptation of the grid style expression
of parallelism to OpenMP offload, as well as GPU scratch
memory use and optimization of reduction operations.

IV. LLVM OPENMP EXTENSIONS

In this section we discuss extensions proposed to the
LLVM/OpenMP ecosystem. We explain the motivation for
these extensions and their use in Kokkos-OMP backend. We
also show the performance impact on Kokkos applications
using the newly optimized Kokkos-OMP backend.

A. Dynamic Shared Memory Extension

One limitation of current OpenMP API is the inability
to expose dynamic memory as “shared” among threads in
an OpenMP team. While OpenMP 6.0 has proposed ex-
tensions to address the issue for stack or compile time
constant variables, support for sharing of dynamically al-
located memory among members of a team is still un-
available. LLVM/OpenMP has introduced extensions to ad-
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1 using ScratchViewType = Kokkos::View<int*, Kokkos
::DefaultExecutionSpace::scratch_memory_space
,...>;

2

3 // Create N teams with 32 threads per team.
4 Kokkos::TeamPolicy team_policy(N, 32);
5 size_t scratch_size = team_size *

scratch_per_thread * sizeof(int);
6

7 Kokkos::parallel_for(team_policy.set_scratch_size
(0, Kokkos::PerTeam(scratch_size) ),
KOKKOS_LAMBDA ( const member_type &teamMember
) {

8 ...
9 int num_scratch_elems = scratch_size / sizeof(

int);
10 ScratchViewType scratch(teamMember.team_scratch

(0), num_scratch_elems);
11 ...
12 });

Fig. 3: Scratch memory invocation in Kokkos.

dress this issue. It provides a new target directive clause
ompx_dyn_cgroup_mem(<N>) that allocates N bytes
of data per team that can be shared among threads in
that team. This feature corresponds to the shared memory
that is allocated during a CUDA kernel invocation. The
llvm_omp_target_dynamic_shared_alloc routine,
called inside the target region, returns a pointer to the shared
memory. The routine returns the same value to each thread
of a target team and returns a NULL pointer on the host. The
extension is available in upstream LLVM since release 18.

Kokkos provides a similar abstraction called the “scratch-
pad” to share data among threads in a team. Multiple levels
of scratch-pad are provided in Kokkos. The first level (level-
0) of the scratch-pad is typically mapped to the team specific
allocatable local storage in the memory hierarchy, and hence
is restricted to a few kilobytes. The native backends of
Kokkos, those for CUDA and HIP, use the unified L1 / shared
memory and local data share (LDS), on NVIDIA and AMD
GPUs respectively. The second level (level-1) of scratch-pad
is typically mapped to the high bandwidth memory (HBM).
Until the availability of the ompx_dyn_cgroup_mem(<N
>) clause in LLVM/OpenMP, Kokkos-OMP backend provided
support for this feature by allocating the required scratch
memory (for both level-0 and level-1) on the main memory of
a GPU by using the omp_target_alloc routine. This led
to negative performance implications in certain applications
since the expectation that shared reads/writes within a team
take place in the fast access local storage specific to each team
did not match the implementation. We resolved this issue with
the use of the new clause when LLVM/Clang is 18 or newer.

The basic behavior of Kokkos and its ability to pass functors
to the backends and its subsequent handling of them is
explained in prior work [1]. Subsequent work [3] provides
a deeper discussion specific to the Kokkos-OMP backend.

Fig. 3 shows an example of how the scratch-pad can be
used in Kokkos. Elements in scratch memory are accessed
through a custom version of Kokkos::View, the primary
Kokkos data structure. The first line in Fig. 3 defines such a

1 __global__ cu_kernel(...) {
2 extern shared int scratch[];
3 ...
4 }
5 void calling_kernel(...){
6 size_t scratch_size = scratch_per_thread *

team_size * sizeof(int);
7 cu_kernel<<<N, 32, scratch_size>>>(...)
8 }

Fig. 4: Scratch memory invocation in CUDA.

1 template <class Functor, class... Properties>
2 class ParallelFor<Functor, Kokkos::TeamPolicy<

Properties...>, Kokkos::OpenMPTarget> {
3 ...
4 Functor f;
5 void execute() {
6 int device = omp_get_default_device();
7 #if (CLANG_VERSION > 1800)
8 void* scratch_ptr = omp_target_alloc(shmem_size_L1

, device);
9 #pragma omp target teams thread_limit(team_size)

firstprivate(m_functor) num_teams(...)
is_device_ptr(scratch_ptr) ompx_dyn_cgroup_mem
(shmem_size_L0)

10 #pragma omp parallel
11 {
12 for (int lId = blockIdx; lId < league_size;
13 lId += gridDim) {
14 team(lId, league_size, team_size,

vector_length, scratch_ptr, blockIdx,
shmem_size_L0, shmem_size_L1);

15 f(team); // Inner loop inside
16 }
17 }
18 #else
19 void* scratch_ptr = omp_target_alloc(shmem_size_L0

+shmem_size_L1, device);
20 #pragma omp target teams thread_limit(team_size)

firstprivate(a_functor) num_teams(...)
is_device_ptr(scratch_ptr)

21 // Same parallel region as above
22 #endif
23 }
24 };

Fig. 5: Scratch memory implementation in Kokkos-OMP.

view, ScratchViewType. The second template parameter
indicates that the memory space where the data would reside is
the scratch space of the default execution space, i.e., the default
architecture on which a Kokkos parallel_pattern would
be executed. Lines 4 and 5 determine how much scratch
memory is needed per team. The Kokkos::team_policy
specifies the dimensions of a work grid of thread teams, in
this case N teams with 32 threads per team. To request scratch
space shared among threads of a team we use a member
function to the team_policy called set_scratch_size
as shown in the Kokkos parallel pattern. The first parameter
to set_scratch_size is the scratch level (0 or 1). The
second parameter is the amount of scratch memory needed per
team. To access scratch memory inside the parallel_for
kernel, we create a view of ScratchViewType. Fig. 4 is
the CUDA equivalent implementation of Fig. 3.

In Fig. 5, we show two implementations for scratch memory
in Kokkos-OMP. The choice of the implementation is based on
LLVM versions. shmem_size_L0 and shmem_size_L1
refer to scratch memory requested by the user for level-0
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1 #if (CLANG_VERSION > 1800)
2 char* l0_scratch_ptr = static_cast<char*>(

llvm_omp_target_dynamic_shared_alloc());
3 team_scratch_view = scratch_memory_space(

l0_scratch_ptr, shmem_size_L0, scratch_ptr,
shmem_size_L1);

4 #else
5 team_shared_view = scratch_memory_space(

scratch_ptr, shmem_size_L0, scratch_ptr +
shmem_size_L0, shmem_size_L1);

6 #endif

Fig. 6: Scratch view in Kokkos-OMP.

and level-1 of a TeamPolicy. For LLVM 18 and higher,
we use the LLVM extension ompx_dyn_cgroup_mem

to allocate shmem_size_L0 in shared memory. Level-
1 of scratch memory is then allocated on HBM using
omp_target_alloc. For LLVM prior to 18, both level-
0 and level-1 scratch memory is allocated on HBM and
indexed accordingly when accessed in a scratch view. The
implementation using LLVM extensions in Kokkos-OMP is
our contribution and is already available since the 4.3 Kokkos
release. The code inside the parallel region in Fig. 5 lever-
ages hierarchical parallelism, as explained in later sections.

Fig. 6 shows how a scratch memory view is created in
Kokkos. It is a common interface across all backends that uses
a routine named scratch_memory_space. The first two
parameters to the routine are pointers for level-0 and its corre-
sponding size. The last two parameters follow the same pattern
for level-1 of the scratch memory. scratch_ptr refers
to the memory allocated using omp_target_alloc from
Fig. 5. For LLVM 18 and above, level-0 scratch is accessed via
the llvm_omp_dynamic_shared_alloc extension. For
LLVM 17 or lower, we index into scratch_ptr according
to the size of level-0 and level-1 scratch memory requested.

As shown in Fig. 5 and 6, using the extensions to allocate
dynamic shared memory within a team enables Kokkos-OMP
to match the implementation of level-0 scratch memory as
intended by the framework.

To demonstrate the impact of dynamic shared memory in the
Kokkos-OMP backend, consider TestSNAP proxy application
that is modelled on Spectral Neighborhood Analysis Potential
(SNAP) computations in the LAMMPS molecular dynamics
simulator. It calculates the total energy of a configuration of
atoms as the sum of energies of individual atoms, each of
which is dependent on its neighbor atoms within a certain
distance. We select a problem from the Exascale Computing
Project, with 2000 atoms on one GPU and 26 neighbors per
atom. Of the three main kernels in TestSNAP that consume
more than 98% of the total execution time, two (ui and
duarray) use level-0 scratch memory to store team specific
intermediate information for fast access [7].

The ui kernel calculates expansion coefficients for each
pair of neighbor atoms. It is implemented by generating the
number of teams based on the outer loop while the inner loops
are iterated in a 2-dimensional thread-block. The kernel uses
scratch memory to store partial updates to coefficients for fast
access. The duarray kernel computes the partial derivative
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Fig. 7: TestSNAP performance of native and OMP backend
under scratch-levels 0 (shared memory) and 1 (HBM).

of the coefficients that impact the force on each atom and
neighbor pair. The parallelism exposed in this kernel is similar
to the ui kernel and hence implemented similarly.

Fig. 7 shows the impact of of using dynamic shared memory
extension in the Kokkos implementation of TestSNAP. We
compare the benefits gained by using level-0 scratch memory
compared to level-1, i.e., implementation prior to the use of the
LLVM extension. The Y axis shows the time for each kernel
to run 100 timesteps while the X-axis indicates the two kernels
using scratch memory under Kokkos-native and Kokkos-OMP
backends. For the rest of the paper we follow the convention
of prefixing the Kokkos implementations with “kk” in figures.
For a fair evaluation of the benefits of dynamic shared memory
we also show the performance using native backends under the
two scratch levels. The comparison with the native backend
illustrates the performance regression observed if the scratch
memory is allocated on HBM rather than in the L1 cache.

SNAP and TestSNAP use all three levels of hierarchical
parallelism available in Kokkos in ui and duarray, i.e., the
kernels using scratch memory. Kokkos-OMP backend however
has only two levels of effective hierarchical parallelism [3].
Hence, for a fair comparison, in Fig. 7, we restrict the native
backends to two levels of hierarchical parallelism.

Fig. 7 shows that on NVIDIA A100, ui performance im-
proves by 15% with Kokkos-OMP when data is stored in level-
0 scratch versus level-1 scratch while Kokkos-native backend
shows a 2× speedup in the same scenario. In duarray we
see a ≈4.5× performance improvement with Kokkos-OMP
backend and a 5× speedup with the native backend. For both
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Fig. 8: TestSNAP performance with optimized native and
OMP backends under scratch-levels 0 and 1.

kernels, the speedup achieved by Kokkos-native backend is
higher than the Kokkos-OpenMP backend when team-shared
data is stored in fast access local storage rather than HBM.

On AMD GPUs, going from level-1 to level-0 scratch
memory gives the same rate of performance improvements on
both Kokkos-native and Kokkos-OMP backends. For ui in
both the backends, we do not see any observable performance
improvement. However, in the case of duarray we observe
an ≈15× performance improvement when using the LLVM
extensions to store team shared data in LDS on AMD MI250X.
This matches the observation from the Kokkos-native backend.

While we only show one application, our goal of
this paper is to show a proof of concept of how the
ompx_dyn_cgroup_mem extension in LLVM/OpenMP can
bridge one of the gaps between OpenMP and native frame-
works. There are several other applications written in Kokkos
that can take advantage of the fast access local storage per team
available through the level-0 scratch-pad memory interface.
With the new extension in LLVM, Kokkos-OMP can provide
the intended implementation to the user. The ability to allocate
and access dynamic scratch memory that can be shared among
threads in a team is a major capability previously missing in
OpenMP but available in the native frameworks.

Fig. 7 might give an impression that the dynamic memory
extension largely closes the performance gap between native
and OpenMP backends. However, as mentioned earlier, we
had restricted the Kokkos-native backends to use only two
hierarchical parallelism levels for an equivalent comparison
with the Kokkos-OMP backend. Fig. 8 shows a comparison
with the optimized native versions that use all three levels of
hierarchical parallelism. The differences in kernel execution
times between the Kokkos backends is still significantly dif-

ferent. For ui on both NVIDIA A100 and AMD MI250X,
the native backend benefits significantly with the addition of
three levels of parallelism, making it ≈4.5× faster on Kokkos-
native compared to Kokkos-OMP. Currently the Kokkos-OMP
backend has no meaningful way to extract the 3rd parallelism
level [3]. The remainder of this paper addresses that need.

B. LLVM OpenMP Kernel Mode Extension

The second LLVM extension we leverage is perhaps an even
more important addition to the LLVM/OpenMP ecosystem,
enabling us to bridge the gap between native frameworks and
OpenMP. While existing OpenMP offers a rich set of parallel
semantics, which includes a fork-join model and automatic
workload distribution, it needs the support of an extensive
runtime library to manage execution. Runtime operations
often limit performance and consume substantial resources,
particularly on a GPU. Also this overhead has been generally
regarded as unavoidable under the existing API semantics [8].

To overcome the runtime overhead, LLVM/OpenMP pro-
posed a new set of extensions that allow OpenMP target
regions to execute in a “bare metal” mode, also known as
kernel mode [9]. This feature enables OpenMP GPU code
to be written in single instruction multiple threads (SIMT)
style, facilitating an easy transition of an existing GPU code
written in kernel languages such as CUDA and HIP to
OpenMP thereby benefiting from the portability offered by
OpenMP. Furthermore, the OpenMP kernel mode only requires
a thin layer of runtime library support compared to existing
OpenMP, eliminating runtime overhead to potentially improve
performance. This work is built on the work of Tian et al. [9]
to implement features necessary for supporting the Kokkos
programming model using a combination of the existing
OpenMP and the extended OpenMP kernel mode.

We use the LLVM extension ompx_bare as an additional
clause to the pragma omp target teams construct that
directs the compiler to execute the associated code block
in “bare metal” SIMT mode. As with the dynamic shared
memory feature, the additional clause is an extension and not
in the OpenMP standard. Therefore it is prefaced with ompx
instead of the usual omp. Multiple extensions are needed

to support CUDA/HIP style code generation in OpenMP, the
first of which is the implementation of multi-dimensional grid
and blocks. For that LLVM extends the num_teams and
thread_limit clauses to accept a list of integers. For
instance, a three-dimensional CUDA block size represented
as dim3 blockSize(4, 32, 2) can be equivalently ex-
pressed using thread_limit(4, 32, 2). Similarly, a 3-
D grid can be generated as num_teams(x,y,z), which
would be equivalent to dim3 gridsize(x,y,z).

We can replicate the CUDA style kernel launch shown in
Fig. 9 in OpenMP by using the two kernel mode extensions:
1) the SIMT style code generation clause and 2) multi-
dimensional grid and blocks. The OpenMP version using the
extensions is shown in the first line of Fig. 10. In both
programming models, it generates a grid of 128 thread-blocks
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1 cu_kernel<<<dim3(128,1,1), dim3(4,32,2)>>>(a);

Fig. 9: CUDA kernel launch.
1 #pragma omp target teams ompx_bare num_teams(128,

1, 1) thread_limit(4, 32, 2) firstprivate(a)
2 {
3 // number of teams in X-dimension
4 int blockDimx = ompx::block_dim(ompx::dim_x);
5 // team-id in X-dimension
6 int blockIdx = ompx::block_id(ompx::dim_x);
7 // thread-id in X-dimension
8 int threadIdx = ompx::thread_id(ompx::dim_x);
9 // thread-id in Y-dimension

10 int threadIdy = ompx::thread_id(ompx::dim_y);
11 ...
12 }

Fig. 10: OpenMP target region (kernel launch).

in X-dimension, in which each thread-block/team contains 4,
32 and 2 threads in X,Y and Z dimensions respectively.

Fig. 10 also shows the C++ specific access mechanisms for
grid and thread dimensions and the corresponding team and
thread ID inside the kernel mode.

The kernel mode extensions allow the Kokkos-OMP back-
end to have a meaningful implementation for three levels
of hierarchical parallelism which include, 1) a league of
teams, 2) each team comprising multiple threads and 3) each
thread comprising of multiple vectors. Having a vector level
allows optimizations on CPUs with hardware vector units and
instructions. Fig. 11 shows how multi-level parallelism can be
exposed using the three levels of parallel hierarchy in Kokkos.

Fig. 11 creates a 3-dimensional Kokkos::View that is
initialized by traversing each dimension in each of the hierar-
chical levels. The current implementation of the Kokkos-OMP
backend available in upstream Kokkos maps the outer league
level to omp target teams, the intermediate thread level
to omp for and the final vector level to omp simd. How-
ever, the simd clause inside a target region is serialized
in most OpenMP implementations, including LLVM. Prior
work Gayatri et al. [3] discusses in detail the drawbacks of
such a mapping and its impact on the performance of Kokkos
applications that use the Kokkos-OMP backend.

1 Kokkos::View<int***,Kokkos::DefaultExecutionSpace>
a("a",N,N,N);

2 Kokkos::parallel_for(
3 Kokkos::TeamPolicy<>(N, team_size, vector_size),
4 KOKKOS_LAMBDA(const Kokkos::TeamPolicy<>::

member_type &team) {
5 const int i = team.league_id();
6 // iterate over rows owned by this team
7 Kokkos::parallel_for(
8 Kokkos::TeamThreadRange(team, N), [&](const

int64_t j) {
9 // reduction inside the vector range

10 Kokkos::parallel_for(
11 Kokkos::ThreadVectorRange(team, N), [&](

const int64_t k) {
12 a(i,j,k) = ...;
13 });
14 });
15 });

Fig. 11: Kokkos hierarchical parallelism.

The introduction of the ompx_bare extension allows
SIMT style kernel generation such that the Kokkos-OMP
backend can now exploit all three levels of hierarchical
parallelism, similar to native Kokkos backends. The CU-
DA/HIP backends map the outer level to teams (thread
blocks). Within each team, the native backends generate a 2-
dimensional block of threads. Within a thread block, Kokkos
::TeamThreadRange is mapped to Y-dimension of threads
and Kokkos::ThreadVectorRange is mapped to X-
dimension of the threads. The innermost loop is mapped onto
consecutive threads to improve memory coalescing.

Fig. 12 shows our implementation of Fig. 11 in Kokkos-
OMP when kernel mode extensions are enabled. This im-
plementation is currently in a separate fork 1. When the
extensions are available in upstream LLVM, we will submit a
pull request for the implementation to be adopted in the main
Kokkos repository. For the rest of the paper, to differentiate
between our implementation of Kokkos-OMP backend using
the kernel mode extensions and the upstream Kokkos-OMP
backend discussed in [3], we call our implementation the
Kokkos-OMPX backend. Fig. 12 shows the effective code and
not the exact Kokkos code as we want to focus on the Kokkos-
OMPX backend rather than the Kokkos API.

The functor from the league (outermost) level
parallel_for pattern in Fig. 11 is passed to the
ParallelFor class shown in Fig. 12. The execution
policy and its associated information is passed as a template
parameter, shown in the second template parameter to the
ParallelFor class. The execute member function in
ParallelFor implements the parallel pattern. This style is
consistent for all patterns in all Kokkos backends.

Requests for the two levels of scratch memory are repre-
sented by shmem_size_L0 and shmem_size_L1. The dy-
namic shared memory extension, discussed in the previous sec-
tion, is used to request shmem_size_L0 amount of shared
memory. Kernel mode is entered using the ompx_bare clause
and the grid dimensions are generated using the num_teams

and thread_limit extensions. Instead of generating a
kernel with the same number of teams as requested by the
user, the implementation calculates an optimized number of
teams to maximize performance of the kernel. Using a larger
number of teams can improve GPU occupancy for better
code performance. However, it can also increase the memory
footprint required by Kokkos to maintain team specific meta-
data, e.g., the level-1 scratch memory allocated on HBM.
Conversely, generating fewer teams can limit the available
parallelism. Kokkos backends try to optimize the number of
teams generated based on the underlying architecture and
scratch memory requested. In Fig. 12, this number is repre-
sented as max_teams. A loop inside the kernel mode han-
dles cases where max_teams is smaller than the requested
league_size (iteration space of the outermost loop in
Kokkos hierarchical parallelism).

1https://github.com/rgayatri23/kokkos/tree/ompt kernel mode.
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1 template <class Functor, class... Properties>
2 class ParallelFor<Functor, Kokkos::TeamPolicy<

Properties...>, Kokkos::OpenMPTarget> {
3 ...
4 Functor f;
5 void execute() {
6 // scratch request for level-0 and 1
7 int shmem_size_L0 = ...;
8 int shmem_size_L1 = ...;
9 // number of teams based on occupancy

10 int max_teams = ...;
11 #pragma omp target teams ompx_bare num_teams(

max_teams) thread_limit(vector_size,team_size
,1) ompx_dyn_cgroup_mem(shmem_size_L0)

12 {
13 int blockId = ompx::block_id(ompx::dim_x);
14 int gridDim = ompx::grid_dim(ompx::dim_x);
15

16 for (int lId = blockId; lId < league_size; lId
+= gridDim) {

17 team(lId, league_size, team_size,
vector_length, scratch_ptr, blockId,
shmem_size_L0, shmem_size_L1);

18 f(team); // Inner loop inside
19 }
20 }
21 }
22

23 template <class Lambda>
24 void parallel_for(const TeamThreadRangeBoundaries

<...>& loop_boundaries, const Lambda& lambda)
{

25 int start = loop_boundaries.start;
26 int end = loop_boundaries.end;
27 int blockDimy=ompx::block_dim(ompx::dim_y);
28 int threadIdy=ompx::thread_id(ompx::dim_y);
29 for (int i=start+threadIdy; i<end; i+=blockDimy)
30 lambda(i);
31 }
32

33 template <class Lambda>
34 void parallel_for(
35 const ThreadVectorRangeBoundaries<...>&

loop_boundaries, const Lambda& lambda) {
36 int start = loop_boundaries.start;
37 int end = loop_boundaries.end;
38 int blockDimx=ompx::block_dim(ompx::dim_x);
39 int threadIdx=ompx::thread_id(ompx::dim_x);
40 for (int i=start+threadIdx; i<end; i+=blockDimx)
41 lambda(i);
42 }

Fig. 12: Hierarchical parallelism in Kokkos-OMPX backend.

Below the ParallelFor class, we show the code
snippet for the parallel_for implementation of the
TeamThreadRange hierarchy. The Kokkos-OMPX backend
iterates through the Y-dimension of the team threads rather
than using omp for directives as in Kokkos-OMP.

At the end of Fig. 12, we demonstrate the parallel_for
implementation for ThreadVectorRange. In Kokkos-

OMPX we iterate through the X-dimension of threads in a
team until we reach the loop boundaries. The same is imple-
mented using simd in Kokkos-OMP as mentioned earlier. The
ability to use parallelism in all 3-levels of parallel hierarchy
is one of the main advantages of kernel mode extensions.

Fig. 13 shows the performance of TestSNAP when running
with the Kokkos-OMPX backend compared to Kokkos-native
and Kokkos-OMP backends. The team and vector sizes in the
kernel mode are similar to the native backend, matching the
best grid dimension for the backend, i.e., a vector_size of

Kernels

T[
se

cs
]

0.00

0.50

1.00

1.50

ui duarray yi

kk-native kk-OMPX kk-OMP

TestSNAP (Kernel mode) on NVIDIA A100

Kernels

T[
se

cs
]

0.00

1.00

2.00

3.00

ui duarray yi

kk-native kk-OMPX kk-OMP

TestSNAP (Kernel mode) on AMD MI250x

Fig. 13: TestSNAP performance with Kokkos-OMPX back-
end.

32 on NVIDIA A100 and 64 on AMD MI250X. The vector
size is a constant across TestSNAP and team sizes are chosen
based on the amount of scratch memory that can be requested
without oversubscribing the resource.

On NVIDIA A100, the impact of kernel mode is minimal
for duarray, but using dynamic shared memory (also avail-
able in Kokkos-OMP) already improved the performance of
the kernel, now only 3-4% slower than the native backend. For
ui, Kokkos-OMPX is 4× faster than Kokkos-OMP, although
40% slower than the Kokkos-native backend. However on
AMD MI250X, Kokkos-OMPX performs better on ui by
15% compared to the Kokkos-native (HIP) backend. Although
in duarray Kokkos-OMPX is faster than Kokkos-OMP, it
is still slower than the native backend. We are currently
investigating the slowdowns. The slowdown might be due to
the small but still existing LLVM/OpenMP runtime overhead,
or differences in generating the optimal kernel parameters,
i.e., max_teams. The overhead can also be caused by the
presence of lambdas as explained in [3].

Kokkos supports multi-dimensional parallelism in closely
nested loops using MDRangePolicy, passing in the number
of nested loops and iteration ranges for each of the loops.
MDRangePolicy is semantically equivalent to the OpenMP
collapse clause, and the Kokkos-OMP backend implements
it using that clause.
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1 Kokkos::parallel_for(
2 Kokkos::TeamPolicy<>(num_teams, team_size,

vector_size),
3 KOKKOS_LAMBDA(const Kokkos::TeamPolicy<>::

member_type &team) {
4 int64_t first_row = ...; // per team
5 int64_t last_row = ...; // per team
6

7 // iterate over rows owned by this team
8 Kokkos::parallel_for(
9 Kokkos::TeamThreadRange(team, first_row,

last_row),
10 [&](const int64_t row) {
11 const int64_t row_length = ...;
12 ...
13 double y_row;
14 // reduction over non-zeroes in the row
15 Kokkos::parallel_reduce(
16 Kokkos::ThreadVectorRange(team, row_length),
17 [=](const int64_t i, double &sum) {
18 sum += A.values(i + row_start);
19 ...
20 }, y_row);
21 y(row) = y_row;
22 });
23 });

Fig. 14: Kokkos hierarchical parallelism for SPMV.

A bonus of kernel mode is that kernel yi, which uses
MDRangePolicy, now exposes more parallelism because the
vector_size is now 32 and 64. The yi kernel performs
a Clebsh-Gordon product on the coefficients calculated in
ui. It is a 3 dimensional perfectly nested loop whose paral-
lelism is exploited using the collapse clause from OpenMP
where the iteration range of the innermost loop is equal to
vector_size. Since there was no effective implementation
for simd used for the ThreadVector loop in Kokkos-
OMP, we had to restrict vector_size to “1” in Kokkos-
OMP to maintain correctness. This restriction is eliminated in
kernel mode, so the collapse clause can now extract more
parallelism and performance of yi improves by 25% on both
NVIDIA A100 and AMD MI250X as shown in Fig. 13.

C. Reductions in OpenMP Kernel Mode

The introduction of kernel mode also allows us to perform
inter team reductions using an efficient implementation that
can exploit dynamic shared memory and advanced techniques
of shuffle instructions. Gayatri et al. [3] used a conjugate
gradient solver (CGSolve) application as a vehicle to under-
stand performance differences between the Kokkos-OMP and
Kokkos-native backends. It discussed how the performance of
CGSolve is heavily dependent on the Sparse Matrix Vector
(SPMV) computation which uses three levels of hierarchical
parallelism to extract maximum parallelism out of the kernel.

Fig. 14 describes how all three hierarchical parallelism
levels are used to implement SPMV. A group of rows is
distributed among teams. Within each team, each thread is
assigned a set of rows and a reduction over all non-zero
elements in each row is performed by vectors in a thread.

The Kokkos-OMPX backend with LLVM/OpenMP exten-
sions preallocates a dynamic shared buffer sized to the number
of threads in a team to store partial results for nested reduc-
tions. Fig. 15 shows the Kokkos-OMPX backend’s allocation

1 template <class Functor, class... Properties>
2 class ParallelFor<Functor, Kokkos::TeamPolicy<

Properties...>, Kokkos::OpenMPTarget> {
3 ...
4 Functor f;
5 void execute() {
6 int scratch_size = shmem_size_L0 + team_size*

vector_size*sizeof(size_t);
7

8 #pragma omp target teams ompx_bare num_teams(
max_teams) thread_limit(vector_size,team_size
,1) firstprivate(...) ompx_dyn_cgroup_mem(
scratch_size)

9 ... // Same as Fig. 12
10 }
11 };

Fig. 15: Kokkos team specific scratch size.

in scratch memory of one element per thread of a team for
team local reductions. Fig. 16 shows how the reduction in
Fig. 14 is implemented in the Kokkos-OMPX backend. For
simplicity, we omit the fallback code used for compilers that
do not support kernel mode.

Fig. 16 shows the implementation of reductions us-
ing dynamic shared memory in the native frameworks.
Fig. 16 shows the implementation of parallel_reduce

in KK-OMPX, which has an additional parameter com-
pared to parallel_for shown in Fig. 12 to store
the final result. The pointer to the shared mem-
ory buffer is acquired via the LLVM/OpenMP exten-
sion llvm_omp_target_dynamic_shared_alloc as
shown in line 7. The right element within the buffer is indexed
by advancing the pointer with the amount of level-0 scratch
requested. The first elements in the buffer are used for level-0
scratch memory as shown in Fig. 6. In SPMV, scratch_0
would be zero, since it does not request any scratch memory.
The type of the reduction result is abstracted in ValueType
class. The indexed shared memory is then initialized to the
default value and the partial update of each thread is accumu-
lated into the thread specific index. The default constructor for
the ValueType class can be used to assign an initial value.
A sync operation is performed at the end of the partial updates
for all threads in a team to finish their work. This would
be equivalent to the __syncthreads operation available in
both CUDA and HIP. The LLVM/OpenMP has been extended
by the authors to provide a portable synchronization called
ompx::sync_block_acq_rel. The partial results are
then accumulated by a single thread, thread-0, to calculate
the final result, which is stored in a location that is accessible
to each thread in the team. Kokkos semantics do not require
any specific thread to do the final write, and every thread in
the ThreadVectorRange shall have the final result to maintain
correctness. Ultimately, an optimized implementation would
provide a common mask for each set of threads in the X-
dimension corresponding to a single thread in the Y-dimension
and broadcast to all threads with the same mask.

Fig. 18 shows a performance comparison of SPMV us-
ing the Kokkos-OMPX backend against Kokkos-OMP and
Kokkos-native backends. There is also a direct OpenMP
version that uses LLVM extensions without Kokkos, which we
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1 template <class Lambda>
2 void parallel_reduce(
3 const ThreadVectorRangeBoundaries<...>&

loop_boundaries, const Lambda& lambda,
ValueType& result) {

4 int start = loop_boundaries.start;
5 int end = loop_boundaries.end;
6 size_t scratch_0 = //level-0 scratch;
7 ValueType* buf = static_cast<ValueType*>(

llvm_omp_target_dynamic_shared_alloc()) +
scratch_0;

8

9 int blockDimx=ompx::block_dim(ompx::dim_x);
10 int threadIdy=ompx::thread_id(ompx::dim_y);
11 int threadIdx=ompx::thread_id(ompx::dim_x);
12 int gridId = threadIdy*blockDimx+threadIdx;
13 buf[gridId] = ValueType();
14

15 for (int i=start+threadIdx; i<end; i+=blockDimx)
{

16 ValueType tmp = ValueType();
17 lambda(i,tmp);
18 buf[gridId] += tmp;
19 }
20 ompx::sync_block_acq_rel(); //team sync
21

22 if (threadIdx == 0) {
23 for (int tid = 0; tid < blockDimx; ++tid)
24 vector_reduce += buf[threadIdy * blockDimx +

tid];
25

26 buf[threadIdy * blockDimx] = vector_reduce;
27 }
28 ompx::sync_block_acq_rel(); //team sync
29

30 // Every thread should have the final value
31 result = buf[threadIdy*blockDimx];
32 }

Fig. 16: Kokkos-OMPX ThreadVector reduction.

call “direct-ompx”. The Y-axis of Fig. 18 shows the bandwidth
achieved by SPMV. There are three different blocks of bars
in the figure to illustrate the impact of problem size. On
NVIDIA A100, the Kokkos-OMPX backend performs at-least
15% better than the the upstream Kokkos-OMP backend. The
difference between the two versions increases with the amount
of data transferred. The Kokkos-OMPX backend is however
always slightly less performant compared to the native back-
end. The best performance was achieved by the direct-ompx
version. On AMD MI250X, Kokkos-OMPX backend is at-
least 2× more performant than the Kokkos-OMP backend.
However the Kokkos-OMPX backend is 2× slower than the
Kokkos-native backend and the direct-ompx implementation.

D. Optimizing Occupancy and Shuffle Operations

Remaining performance gaps concern GPU occupancy and
shuffle operations. Both native and OpenMP backends use
multiple heuristics to improve the occupancy of a Kokkos
kernel. One heuristic is based on the maximum number of pos-
sible teams that can simultaneously run on a given architecture,
such as the number of thread blocks that can be simultaneously
scheduled on a single streaming multiprocessor (SM) on
NVIDIA GPUs. A kernel is generated using this heuristic to
determine the number of teams, implying that a loop is needed
to meet the user provided league_size. Even if the number
of teams generated in the backend is similar to the requested
league_size, the overhead of a loop is still inevitable.

1 #ifdef ompx_shuffle
2 int gridId = threadIdy*blockDimx + threadIdx;
3 vector_reduce = buf[gridId];
4 for (int offset = blockDimx / 2; offset > 0;

offset /= 2) {
5 vector_reduce += ompx::shfl_down_sync(-1,

vector_reduce, offset);
6 }
7 #else
8 if (threadIdx == 0) {
9 for (int tid = 0; tid < blockDimx; ++tid)

10 vector_reduce += buf[gridId + tid];
11 }
12 #endif
13 ompx::sync_block_acq_rel(); //team sync
14

15 // Store the final value in a common location
16 if (threadIdx == 0)
17 buf[gridId] = vector_reduce;
18 ompx::sync_block_acq_rel();
19

20 // Every thread have the final value
21 result = buf[threadIdy*blockDimx];

Fig. 17: Kokkos shuffle reductions in a team.

To avoid this overhead, we modified both backends to create
special instances of kernel generation in which the loop can
be eliminated depending on the league_size requested.

Kokkos native backends use shuffle primitives from CUDA
and HIP to implement optimized reductions. An equivalent
interface (ompx::shfl_down_sync) has been added as an
LLVM OpenMP extension. The parameters to this routine are
similar to those in the native frameworks, i.e., mask, value and
offset. Fig. 17 shows how the accumulation of values from
Fig. 16 can be modified to use the shuffle primitive.

Fig. 19 shows the performance of SPMV when both
Kokkos-native and Kokkos-OMPX backends optimize the
number of teams generated, i.e., elimination of the loop when
league_size is at most max_teams. The Kokkos-OMPX
backend additionally uses shuffle primitives to accumulate
updates same as what the direct-ompx version does.

On NVIDIA A100, the Kokkos-OMPX backend sees 15%
better performance when running in the optimized mode and
reaches the equivalent performance as native backend in cases
of higher data transfer. However, the version of SPMV using
OpenMP extensions still achieves a 5% higher performance
compared to the Kokkos versions. In this scenario we can
attribute some overhead to using the Kokkos framework.

On AMD MI250X, the optimized Kokkos-OMPX versions
are 50% faster for higher data transfers compared to non-
optimized versions. The optimized Kokkos-OMPX backend
outperforms the direct-ompx version with LLVM/OpenMP
extensions and the Kokkos-native backend. Profiling reveals
several key differences between optimized the Kokkos-OMPX
version and the direct-ompx version that contribute to their
performance difference on AMD MI250X: Kokkos-OMPX
uses fewer total registers (64 versus 80) for direct-ompx,
resulting in slightly higher occupancy (29.42% vs 26.49%).
Kokkos-OMPX also exhibits a higher L2 cache hit rate
(65.07% versus 61.65%), indicating more efficient memory
access patterns. Inspection of the intermediate representation
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Fig. 18: SPMV performance using kernel mode.

(IR) reveals differences in instruction sequence order rather
than significant structural variations, suggesting that the per-
formance gap stems from subtle optimizations rather than
fundamental algorithmic differences. This target-dependent
performance variation strongly indicates that the observed
differences on the AMD platform are likely due to distinct
backend optimization pipelines employed by the two targets.

In summary, we have shown how LLVM/OpenMP exten-
sions can be used to optimize Kokkos parallel patterns on
GPUs. The new Kokkos-OMPX backend can now match the
native backends of Kokkos on NVIDIA and AMD GPUs.

V. RELATED WORK

Due to the high potential performance benefits of its use,
GPU shared memory has been a topic of several recent
efforts regarding OpenMP offload. Huber et al. [10] describe
how recent versions of the LLVM/OpenMP runtime examine
variables and determine placement, including use of shared
memory where safe and appropriate [10]. Gammelmark et al.
[11] show how programs can be structured to allow the
compiler to infer that GPU shared memory can be used, in
the absence of explicit annotations. Talaashrafi et al. [12]
show how the OpenMP runtime library can in some cases
automatically make use of GPU shared memory.

Although we focus on NVIDIA and AMD GPUs in this
study, TestSNAP can also run on Intel GPUs [13]. Testing
our use of LLVM/OpenMP extensions in the Kokkos-OpenMP
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Fig. 19: Optimized SPMV performance using kernel mode.

backend on Intel GPUs is a topic for future work, as upstream
LLVM does not currently support OpenMP offload for them.

Kokkos is one of several C++ performance portability
frameworks. Others, such as RAJA [14], may also benefit from
LLVM-OpenMP extensions using techniques similar to ours.
Additionally, since the OpenMP API also supports Fortran,
eventual inclusion of the extensions in the specification would
also benefit programmers in that language, which currently has
few performance portable options besides OpenMP offload.

VI. CONCLUSION

OpenMP is a widely used parallel programming model with
support from open source and vendor compilers. However,
adoption of OpenMP offload for GPUs has been more limited.
Contributing factors include lack of support for advanced
optimization techniques, e.g., use of dynamic memory shared
among a team of threads, and heavyweight runtime library
requirements compared to the simple multi-dimensional grid
model of CUDA and HIP.

In this paper we have discussed two extensions to the
LLVM/OpenMP ecosystem for GPUs, 1) the ability to request
dynamic shared memory within a team and 2) the option to
write SIMT style code in OpenMP. Together the extensions
bridge key feature gaps between native frameworks such as
CUDA/HIP and OpenMP. We have also shown how the ex-
tensions can be combined with additional performance tuning
extensions in LLVM/OpenMP such as shuffle instructions to
further optimize reductions on GPUs. The result is that users
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can leverage OpenMP’s wider portability compared to vendor
supported frameworks without major performance penalties.

We have demonstrated the use of new extensions in perfor-
mance portable frameworks through the exemplar of Kokkos,
in which we have extended the OpenMPTarget backend to use
LLVM/OpenMP extensions when offloading Kokkos execution
patterns to GPUs. Using these extensions, the performance of
representative programs is now competitive with the native
(CUDA/HIP) backends of Kokkos on NVIDIA and AMD
GPUs. Our demonstration of these extensions provides mo-
tivation for the OpenMP Language Committee to consider
adoption of them in the API for eventual availability in
other OpenMP implementations beyond LLVM. Moreover,
our evaluation of Kokkos with LLVM/OpenMP extensions
provides evidence of viability for OpenMP GPU offload in
large C++ based projects for performance portability.
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