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Abstract. Following the mass adoption of external accelerators for high
performance computing, the overall performance of many applications
has become increasingly dependent on relatively small accelerated ker-
nels. As static analysis is fundamentally limited by dynamic values and
external definitions, standard ahead-of-time compilation is not always
sufficient to achieve the best performance. Furthermore, many users look-
ing to port an existing application to run on an external accelerator will
not want to fundamentally restructure their programs. These and other
problems can be addressed through both link-time optimization (LTO)
and just-in-time (JIT) compilation, but until now had sparse and incon-
sistent support from the compiler.

In this work, we present a new compilation method that enables
device-side LTO as well as a transparent JIT compilation tool-chain for
OpenMP target offloading. Our contributions include an entirely new
device linking and embedding scheme to enable LTO as well as a novel
JIT engine to efficiently optimize OpenMP offloading regions at run-time.
We also introduce a persistent caching system to improve end-to-end run-
time using the JIT engine and minimize kernel launching overheads. We
measure the performance of our LTO and JIT implementation via sev-
eral real-world scientific applications. With our optimizations we observe
significant improvements through LTO on large applications as well as
significant end-to-end execution time improvement using JIT.

Keywords: OpenMP · GPU · LTO · JIT

1 Introduction

The dominance of massively-parallel GPGPU based accelerators in high perfor-
mance computing systems has resulted many applications being highly depen-
dent on small accelerated kernels executed on the device. This poses a challenge
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for compilers looking to optimize applications targeting heterogeneous systems,
especially through generic programming models, such as OpenMP target offload-
ing. The massively parallel nature of these systems means that any missed opti-
mizations or overhead can result in considerably large performance losses. Fur-
thermore, the compiler’s ability to optimize these program is fundamentally lim-
ited by external definitions or dynamic values only known at runtime. OpenMP
especially makes heavy use of environment variables whose values can only be
known at runtime. This means that ahead-of-time (AoT) optimizations alone are
not sufficient to determine important constants, such as the number of teams
and threads in a region.

In this work we present a transparent implementation of link-time optimiza-
tion (LTO) and just-in-time (JIT) compilation for OpenMP offloading for the
LLVM/Clang compiler infrastructure. We first show an overhauled driver for
compiling OpenMP offloading programs in LLVM/Clang that allows transpar-
ent embedding and linking of device LLVM IR. The JIT engine uses the linked
bitcode to perform further optimizations and code generation at runtime with the
knowledge of runtime values, e.g., environment variables. Finally, we present the
performance improvements of the LTO and JIT compilation on several bench-
marks and proxy-applications.

In the following we first briefly explain the necessary background on OpenMP
offloading compilation via LLVM/Clang, LTO, and JIT. Sections 3 and 4
describe our LTO and JIT contributions in detail. The evaluation of our app-
roach is given in Sect. 5, and finally, before the conclusion in Sect. 7, we discuss
related works in Sect. 6.

2 Background

In this section, we will briefly introduce the current compilation pipeline used
to create OpenMP target offloading applications and support LTO and JIT.

The LLVM/Clang compiler driver is responsible for creating the neces-
sary actions to produce the compiled output. Compilation for LLVM/OpenMP
offloading is more complex than a standard compilation job because the compiler
must compile and link for multiple architectures at once. In order to maintain
standard compilation semantics, the compiler driver will create a compilation
for each target architecture and then embed the result into a single fat binary.
Device linking occurs by extracting the device code inside the fat binary and
first running the appropriate device linking job on it. After linking, the device
image still needs to be registered with offloading runtime on the host. To register
the device image we create a new module containing the necessary registration
code and link it with the rest of the application.

Standard LTO in LLVM is performed by emitting LLVM IR bitcode instead
of an object file. During linking, if the linker supports LTO, all the identified
LLVM IR bitcode files will be merged and optimized together using symbol
resolution information from the linker. The linked and optimized bitcode is then
compiled and linked with the other input files. Similarly, JIT compilation uses
LLVM IR bitcode to compile for the target architecture as-needed at runtime.
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3 Link Time Optimization Support

As mentioned in Sect. 2, creating offloading binaries is more challenging than
standard compilation. In this section, we first introduce our new offloading driver
for LLVM/Clang. Then, we describe our new augmented linker to support device
linking with LTO.

3.1 Offload Driver

Fig. 1. The main phases of the new LLVM/Clang offloading driver. Source file compila-
tion is done for every target architecture using the device tools. This is then embedded
into the host to create a fat-binary and linked with the new augmented linker.

Our new driver supports OpenMP offloading compilation is a unified manner by
utilizing a common embedding and linking scheme for each target architecture.
The first step is to compile each input OpenMP offloading program to an object
file using LLVM/Clang. If we are performing LTO, we instead emit LLVM-IR
instead of a standard ELF object file

We then complete the host compilation and create a fat-binary by storing
each output device object file in a special section in the output ELF file. This
special section contains both the embedded image and a binary blob containing
necessary metadata to link the device image, such as its target and architecture.
This section will be named llvm.offloading and is identified in the ELF using
the new SHT_LLVM_OFFLOADING section type. Furthermore, we use the SHF_EXCLUDE
section flag to indicate that this section should be dropped by the linker when
creating the final executable. The final compilation step is to pass the new fat
binary to the linker, which will use the embedded device code to create an
executable device image. These steps are roughly outlined in Fig. 1.

3.2 Offload Linker

We created a new augmented linker supporting offloading device linking and reg-
istration. This new augmented linker works as a thin wrapper over the original
host linking job called the linker wrapper. First, the linker wrapper searches every
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input file or library for embedded device code stored in the SHT_LLVM_OFFLOADING
sections. Once the files are located and extracted we sort each input object using
its target architecture that was extracted from the metadata stored previously.
We then identify all the input files containing LLVM-IR and use LLVM’s exist-
ing LTO library to create an object file output. All device objects for a single
target architecture are then linked together using the vendor linker to create an
executable.

The device executable is useless on its own, so first we need to register each
linked executable with the vendor’s runtime library. We perform this final step
by creating a new module containing the executable data and the runtime calls
necessary to register it. This module is then compiled to an ELF object file and
added to the linker input. Finally, we run the original host linking job and obtain
an executable containing offloading code.

4 Just-in-Time Compilation Support

In this section, we will introduce our support for JIT compilation of OpenMP
offloading applications in LLVM. We will first talk about the necessary compiler
support, followed by the code generation and sub-architecture portability sup-
port. Next, we propose three specializations to improve optimizations using JIT.
Finally, we discuss a multi-level caching implementation used to mitigate host
overhead caused by JIT compilation and optimization.

4.1 Compilation Flow

We utilized the LTO support shown in Sect. 3 to create linked LLVM-IR neces-
sary for JIT compilation. The only change required to the compilation flow for
JIT is to skip the LTO back-end in the linker and register the linked LLVM-IR
directly. Now when the runtime attempts to register the device code it will use
JIT if it encounters LLVM-IR instead of a device executable.

4.2 JIT Kernel Invocation

When the OpenMP runtime attempts to execute a kernel when performing JIT
we first need to compile and register it as before. We will also use LLVM’s LTO
support for the code generation to call the same back-end we skipped during
ahead-of-time linking. The previous LTO optimization pass is augmented with
JIT-specific optimizations that will be described later as well as aggressive prun-
ing of global definitions unused by the current kernel. After the LTO backend is
run, we then need to register the kernel with the device runtime and proceed to
the kernel launch.
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4.3 Sub-architecture Portability

AoT compilation does not support sub-architecture portability because device
images are not usually compatible with different compute capabilities. For exam-
ple, if the program is compiled for sm_35, it can only run on sm_35 GPUs. Pro-
grams instead must be recompiled for the desired target device.

With our JIT support, device images are generated at runtime using target
information collected from the target device, thus we only need to compile pro-
grams once (AoT) and they can be executed on different target devices with
varying sub-architectures. However, it is worth noting that this does not sup-
port the portability across different vendors. As we mentioned before, we embed
LLVM IR which is still inherently vendor dependent. In addition, for AMD
GPUs, an extra pass is set up to update all target features attached to functions
to make sure its backend works properly.

4.4 Specialization

We propose three specializations with information only available at runtime.
They are all enabled by default and can be configured via environment variables.

Scalar Kernel Arguments. One of the most important pieces of runtime infor-
mation is kernel arguments. There are two kinds of kernel arguments: pointer
values and scalar values. We do not specialize pointer values because it can easily
invalid caching, which will be discussed later, incurring more host side overhead.
Scalar values are however specialized, hence replaced with their runtime value
prior to optimizations. If the scalar values are loop bounds, it can make more
aggressive loop optimization possible.

Pointer Alignments. An important characteristic of a pointer is its align-
ment, which plays an important role in vectorization and instruction selection.
Although each target has a default pointer alignment, the actual alignment of
a pointer can be more strict. For each pointer value p, we iterate a list of pre-
defined alignments a ∈ {128, 64, 32, 16, 8} in decreasing order and find the first
a that p is aligned to. If a is greater than the default alignment, an attribute
align with value a is added to the pointer kernel argument.

Launch Parameters. Two kernel launch parameters, grid size and block size,
are provided to the driver API when launching a kernel. If the num_teams clause
or thread_limit clause is present and a compile time constant value is specified,
the corresponding runtime functions to query the size are optimized away at
compile time [1]. If the clause is not specified, the runtime will choose a default
value. Given that these launch parameters are known to the JIT, specialization
is performed as if the user provided constant values via the respective clauses.
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4.5 Internalization

In the device runtime, there are global variables listed in @llvm.used to prevent
to be optimized out when building the device runtime. At JIT time1, since the
module has already been linked, all feasible global variables, except those that
should be exposed to users, can be optimized. We mark all global variables,
except those exposed to users, as internal and remove them from @llvm.used.

4.6 Caching

JIT compilation requires constructing an LTOModule, going through kernel argu-
ments, modifying the module, generating a device image, and loading it to the
target device. This can have significant overheads and can potentially cancel the
benefits of our runtime optimizations. To mitigate the cost we need to reuse the
generated device image for multiple kernel launches. To this end, we implement
a novel classification system for kernel launches together with a persistent, two-
level cache system that keeps specialized images in the host memory (L2) as well
as in the device memory (L1) for future reuse. JIT compilation is only invoked
if there is no compatible cached image available at launch time.

Kernel Launch Identification. In order to reuse an image, we need an effi-
cient way to determine if it is compatible with an incoming kernel launch request.
A kernel launch is effectively defined by the kernel (function) name, the kernel
arguments, and the number of teams and threads (= grid dimensions). However,
kernel launches do not require identical values to share/reuse the same opti-
mized image. For example, pointers 0x1230 and 0x4560 are not exactly same, but
they are both 16-byte aligned. If that is the only difference between two kernel
launches, they are compatible. Additionally, if parameters are not involved in
specialization their values do not impact kernel launch compatibility.

In order to efficiently query the cache we employ a kernel launch descriptor,
which includes: the kernel name, kernel arguments, architecture, and a list of
specializations applied to the kernel when the image was compiled. An existing
optimized image with a kernel launch descriptor is compatible with a kernel
launch, and hence can be reused, if (1) the kernel name and architecture match
and (2) the specializations applied to obtain the image match what would have
been applied for the new launch in question.

L1: Target Table Cache. A target table stores information about offloading
entries, such as entry size, host pointer and its corresponding device pointer. It
is constructed when an image is loaded to the device. Therefore, it is per device
and every execution starts with an empty L1 cache that is filled on-demand.

We set up a target table cache, indexed by kernel entry name, for each target
device. Each entry is a list of target tables for the same kernel entry but with
different kernel launch descriptors.
1 Technically, this does not have to be limited to JIT time but LTO time is sufficient.
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L2: Image Cache. An image is a memory buffer that can be loaded to a
target device. It can be used for all target devices with same sub-architecture.
More importantly, it does not contain (dynamic) device pointers, which gives
us the ability to reuse it across executions. Images are reused within and across
program runs whenever a compatible kernel launch is encountered.

We set up an image cache for each sub-architecture. An image cache is orga-
nized similar to target table cache. In addition, during the runtime shutdown,
the image cache writes all cached images and metadata to a file. When the run-
time is loaded, it reads all images from the file and construct the image cache
to be used by the application. Hence, prior runs with compatible kernel launch
parameters can effectively eliminate most overheads of just-in-time compilation.

Cache Lookup. When a kernel k is launched, the cache lookup works as follows:

1. Check if there is a compatible entry in the target table cache (L1) for the
target device. If yes, move to Step 2; otherwise, move to Step 3.

2. Iterate over the list of target tables. If there is a match, it is a L1 cache hit,
and the target table can be used directly; otherwise, it is a L1 cache miss and
we proceed with Step 3.

3. Check if there is a compatible entry in the image cache (L2) for the sub-
architecture of the target device. If yes, move to Step 4; otherwise, it is a L2
cache miss and we proceed to Step 5.

4. Iterate over the list of images. If there is a match, it is a L2 cache hit. The
image will be loaded to the target device, a new target table will be con-
structed and added to the L1 cache. If no match was found it is a cache miss.
Move to Step 5.

5. JIT the device image, add it to the L2 cache (for cross-execution persistence),
load it to the target device, and add it to the L1 cache.

4.7 Specialization Tracker

In spite of the multi-level caching system, it is still possible that scalar kernel
arguments for a kernel vary in every (or many) different kernel launches. For
example, 552.pep in SPEC ACCEL [2] has one scalar argument that changes in
every kernel launch. As consequence, we have to compile a new image and load
it to the device for every launch. This situation can cause significant overheads
and device resource waste.

We set up a specialization tracker for each kernel entry which records the total
number of specializations, denoted by N , and the number of specializations for
each kernel argument, including the launching parameters, represented by ni.
Before we apply any specialization, we check if N > T and ni/N > R, where
T is a threshold to always allow a certain amount of specialization, and R is
an argument specialization control ratio. If both conditions are true we have
exceeded the specialization quota for an argument and it is not specialized in
the future. For any subsequent kernel launch, no matter whether the argument
value change, there has to be a match as no argument specializations has been
applied to one image. Both T and R can be configured via environment variables.
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5 Evaluation

For our performance evaluation we used a Nvidia A100 GPU system with an
AMD EPYC 7532 CPU and 256 GB DDR4 RAM. We used CUDA 11.4.0 for
all experiments and collected kernel times with nsys. In addition to the Nvidia
system, an AMD MI100 GPU system with two AMD EPYC 7532 CPUs and 512
GB DDR4 RAM is used for portability evaluation. Our prototype version (�) is
based on � 3723868d.

5.1 Benchmarks

We looked at seven scientific proxy applications for our performance study for
LTO and JIT compilation and evaluated both the end-to-end execution time and
the performance of their main GPU kernels. Our results are presented relative
to the performance of AoT compilation without LTO. We also test four of the
seven proxy applications for sub-architecture portability with JIT.

OpenMC is a continuous-energy Monte Carlo particle transport applica-
tion [3] that has recently been ported to the OpenMP target offloading pro-
gramming model for use on GPU-based systems [4]. In addition to being an
open source application, OpenMC also provides a host of advanced modeling
and simulation capabilities including depletion, advanced geometry representa-
tions, on-the-fly Doppler broadening, and multigroup cross section generation.

XSBench and RSBench are two proxy applications for the Open Monte
Carlo (OpenMC) project. Both proxies compute the continuous energy macro-
scopic neutron cross-section lookup when studying neutron transport and
both are available in multiple programming languages and frameworks. While
XSBench [5] extracts one of the main kernels in OpenMC, which is in memory
bound, RSBench [6] provides a compute bound alternative implementation.

MiniFMM is a proxy application developed by the University of Bristol
for Fast Multipole Method (FMM) [7]. It solves the Laplace equation in a three-
dimensional polar coordinate plane by applying the FMM, which uses a dualtree
traversal method.

SU3 is a Lattice QCD SU(3) matrix-matrix multiply microbenchmark. The
kernel is based on the mult_su3_nn() SU(3) matrix-matrix multiply routine in
the MILC Lattice Quantum Chromodynamics(LQCD) code.

Thermo4PFM is a software library used for Phase-Field modeling of solidi-
fication in metallic alloys [8]. Given the thermodynamic properties of a materials
in its various phases, it solves a small system of non-linear equations to compute
the force that drives phase changes.

miniMDock is a GPU-accelerated performance portable particle-grid based
protein ligand molecular docking tool. It is used for virtual drug discovery com-
pound screens based on a molecular recognition model, that analysis a three-
dimensional model of an interaction between a protein and a small molecule.
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Fig. 2. Kernel execution time relative to the base AoT case without LTO.

5.2 Performance Results

Figure 2 shows the relative improvement in kernel time for LTO and JIT. Our
results show large improvements for miniMDock, OpenMC, and Thermo4PFM
when LTO is used because these applications have code split between many
files and benefit most from LTO. Although the other cases do not benefit from
cross-file optimizations, LTO can still affect performance due to additional opti-
mizations and internalization of external symbols. The performance evaluation
for JIT uses only the kernel timings and does not include the overhead necessary
to first compile the image. Hence, we assume a perfect pre-filled cache.

Figure 3 shows the relative improvement in end-to-end time for JIT with and
without the offline cache. We can see that in most cases, JIT compilation can
improve the end-to-end performance, except for miniMDock and Thermo4PFM.
For miniMDock, the total kernel time is optimized to about 1.4 s from 2.6 s.
However, because miniMDock uses random inputs the cache is easily invalidated
which results in overall slower execution. In the worst case, the overall JIT over-
head is more than 4.5 s, leading to the performance regression shown in Fig. 3.
This demonstrates that for applications similar to miniMDock, specialization
should be disabled (adaptively). Thermo4PFM also shows an end-to-end perfor-
mance regression, but the offline cache allows it to retain performance.

5.3 Portability Results

Although performance can change when using JIT, another advantage is provid-
ing sub-architecture portability. The sub-architectures of our GPU systems are
SM80 (Nvidia A100) and GFX908 (AMD MI100) respectively. Figure 4 shows
the results of different benchmarks compiled with different sub-architectures on
the two GPU systems, where � means the benchmark runs without any issue.
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Fig. 3. End-to-end execution time relative to the base AoT case without LTO.

Fig. 4. Portability of benchmarks compiled with different SM versions for Nvidia A100
GPU and different GFX versions for AMD MI100 GPU.

6 Related Works

6.1 OpenMP Target Offloading

OpenMP 4.0 introduced target offloading. In LLVM/Clang, OpenMP offloading
support for GPUs was first presented by [9,10]. The (PGI) Fortran front-end,
known as Flang, supports OpenMP offloading via the LLVM/OpenMP run-
times [11]. GCC 5 first supports OpenMP target offloading on Intel MIC archi-
tecture. Starting from GCC 7, Nvidia platforms support was added. All existing
implementation feature ahead-of-time compilation of device code.

6.2 Just-in-Time Compilation

Just-in-time compilation has been used in software systems for decades [12].
However, the support in programming languages vary. For parallel programming
models, OpenCL naturally employs JIT compilation for parallel code execution
via an intermediate representation SPIR-V [13]. [14] implemented automatic
translation of OpenACC to LLVM IR with SPIR kernels, optimization of the IR
code by LLVM optimizer, and execution of the host LLVM IR by LLVM JIT.
For OpenMP, [15] proposed an on-the-fly technique on top of the Pin binary
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instrumentation [16] to detect data races in OpenMP programs. [17] presented
support for parallel programs written in OpenMP executing on JVM using
LLVM IR.

6.3 Link Time Optimization

Link-time optimization is not a new concept and has been supported by various
compilers, including GCC and LLVM/Clang [18]. Nvidia has supported device-
side LTO for CUDA following the CUDA 11.2 release [19], however the Nvidia
compilers do not support LTO for OpenMP offloading. The AMDGPU toolchain
uses LLVM IR bitcode as its relocatable object file format and used bitcode
linking and LLVM optimizations as a part of its compilation.

6.4 Compiler Optimization for OpenMP

Regarding compiler-based optimizations on OpenMP, [20] introduced the first
front-end based optimizations for Nvidia GPUs in LLVM/Clang, related to
choosing the number of teams and threads for parallel loops to avoid idle threads
and reduce register usage. [21] presented the TRegion interface which delayed the
discovery of SPMD regions into LLVM, by contrast to the Clang-based approach,
which enabled more kernels to execute in SPMD mode. [22] introduce in the IBM
XL C/C++ compiler a lowering of OpenMP that executes without the control
loop state machine in a mode where all threads execute in parallel, deemed
SPMD mode of execution, when the target offloaded region encloses a single
parallel construct. [1] presented OpenMP-aware program analyses and optimiza-
tions that allow efficient execution of the generic, CPU-centric parallelism model
provided by OpenMP on GPUs. [23] presented a co-design methodology for opti-
mizing applications using a specifically crafted OpenMP GPU runtime inducing
near-zero overhead in most cases. Recent advances in architecture porting have
made it feasible to extend our work of sub-architecture specialization to retar-
geting across different vendors [24,25].

To our best knowledge, this is the first work to present JIT compilation and
LTO for OpenMP target offloading.

7 Conclusion and Future Works

In this paper, we proposed just-in-time compilation and link-time optimiza-
tion for LLVM/OpenMP target offloading. We showed a new compiler driver
to embed and link device bitcode, and a novel JIT engine that features opti-
mization, caching, and sub-architecture portability. The evaluation results show
that link-time optimization can provide large performance benefits for certain
applications and we can further optimize applications and offer sub-architecture
portability using JIT compilation. In the future, we plan to further improved
JIT compilation and specialization in LLVM/Clang as a default for better inter-
operability between architectures.
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