
Exploring the Limits of Generic Code Execution
on GPUs via Direct (OpenMP) Offload

Shilei Tian1[0000−0001−6468−6839], Barbara Chapman1[0000−0001−8449−8579], and
Johannes Doerfert2[0000−0001−7870−8963]

1 Stony Brook University, Stony Brook, NY 11794, USA
{shilei.tian,barbara.chapman}@stonybrook.edu

2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
jdoerfert@llnl.gov

Abstract. GPUs are well-known for their remarkable ability to acceler-
ate computations through massive parallelism. However, offloading com-
putations to GPUs necessitates manual identification of code regions
that should be executed on the device, memory that needs to be trans-
ferred, and synchronization to be handled. Recent work has leveraged the
portable target offloading interface provided by LLVM/OpenMP, taking
GPU acceleration to a new level. This approach, known as the direct
GPU compilation scheme, involves compiling the entire host application
for the GPU and executing it there, thereby eliminating the need for ex-
plicit offloading directives. Nonetheless, due to limitations of the current
GPU compiler toolchain and execution, seamlessly executing CPU code
on GPUs with certain features remains a significant challenge. In this
paper, we examine the limits of CPU code execution on GPUs by apply-
ing the direct GPU compilation scheme to LLVM’s test-suite, analyze
the encountered errors, and discuss potential solutions for enabling more
code to execute on GPUs without any changes if feasible. By studying
these issues, we shed light on how to improve GPU acceleration and make
it more accessible to developers.

Keywords: OpenMP · GPU · compiler testing.

1 Introduction

GPUs are renowned for their exceptional computational power, primarily at-
tributed to their ability to leverage massive parallelism. Offloading computations
to GPUs has proven to be an effective approach for accelerating various appli-
cations. However, this process typically requires manual identification of code
regions suitable for GPU execution, as well as managing data transfers and syn-
chronization between the CPU and GPU. To address this challenge, recent work
[20, 21] has proposed the direct GPU compilation scheme, which leverages the
portable target offloading interface offered by LLVM/OpenMP. This scheme in-
volves compiling the entire host application for the GPU and executing it there,
eliminating the need for explicit offloading directives.

2 S. Tian, B. Chapman, et al.

Despite the potential benefits of the direct GPU compilation scheme, there
are limitations to executing CPU code on GPUs seamlessly due to current
toolchain and execution constraints. In this paper, we examine the limits of
CPU code execution on GPUs by applying the direct GPU compilation scheme
to LLVM’s test-suite. Through our analysis, we identify and categorize a series
of encountered errors into eight distinct types, which encompass issues with test
cases, bugs in the compiler and runtime, and the absence of certain features that
led to the failure of test case compilations. In addition, we delve into potential
solutions that could enable a wider range of codes to be executed on GPUs,
ideally without necessitating any alterations to user codes, provided it’s feasible.
The study’s primary objective is to elucidate the potential areas of improve-
ment in GPU acceleration, thereby making it more user-friendly and accessible
to developers.

The paper is organized as follows. In Section 2, we provide an overview of the
direct GPU compilation scheme, which is the approach we use in this study. In
Section 3, we describe our methodology and implementation details. Section 4
presents the results of our study, along with a detailed analysis. We review related
works in Section 5. Finally, we conclude the paper in Section 6.

2 Background

OpenMP 4.0 introduced the target construct, which allows code regions to be
executed on target devices such as GPUs [3] and FPGAs [10]. An example of
CUDA code and its equivalent OpenMP version is shown in Fig. 1. In addition
to the target construct (as well as its combined variants), OpenMP provides the
declare target directive that specifies that all associated variables and functions
are to be mapped onto the target devices and thus are usable in device code [18].
The device_type(nohost) clause on a declare target construct forces the com-
piler not to generate host versions of the enclosed variables and functions.

While this approach provides a simpler programming model than traditional
CUDA or OpenCL, it still requires users to wrap the code with the target con-
struct. In particular, users need to identify the regions of code that would benefit
from GPU acceleration and explicitly mark them with the target construct.

The proposed approach by Tian et al. [20] enables the compilation of an ex-
isting host application for GPU execution with minimal modification to the
user code by leveraging the portable target offloading interface provided by
LLVM/OpenMP. Users can provide simple stub code to delegate function calls
to the host using the host remote procedure call (RPC) framework for functions
that can not be executed directly on a GPU. Later, the approach was extended
by augmenting the compiler with a custom link-time optimization pass, which
can automatically generate RPC calls without the need for stub code from users,
and expand source parallelism to the entire GPU device [21].

The compilation and execution path of this approach is illustrated in Fig. 2.
In the following we will briefly introduce the compilation of the direct GPU
compilation scheme.

Title Suppressed Due to Excessive Length 3

__device__ int g;
__device__ void foo();

__global__ void baz() { foo(); }

void bar() {
baz<<<...>>>();

}

(a) An example of CUDA code. The function baz is a kernel that is the entry point of
a GPU program and can be launched from host. The function foo is a device function
that can be called in a kernel.

#pragma omp begin declare target device_type(nohost)
int g;
void foo();
#pragma omp end declare target

void bar() {
// The following region will be outlined to a new function, and will be
// launched from the host, similar to the function baz in the CUDA
// example.
#pragma omp target
{ foo(); }

}

(b) Equivalent OpenMP code using target offloading to Fig. 1a. Even though there is
no explicit kernel specified by users, an OpenMP compiler will outline the target region
and generate a kernel implicitly.

Fig. 1: An example of CUDA code and its equivalent OpenMP code.

2.1 Device Code Representation

The direct compilation framework facilitates executing the entire program on
the GPU by marking all user code associated with the declare target directive,
essentially prepending a begin declare target device_type(nohost) before any
user source file. The framework offers a user wrapper header (shown in Fig. 3),
which can be pre-included using clang’s -include command line option when
compiling user code.

2.2 Loader

The GPU execution still follows a “host-centric” approach where the execution
of a “GPU program” must be initiated from the host. Traditionally, the main
function in the host code has been the entry point for user applications. However,
since the entire user code is now considered device code, a new entry point for the
host code is needed. The direct compilation framework provides a main wrapper

4 S. Tian, B. Chapman, et al.

compile time / runtime
extended LLVM parts

ç
legacy CPU
app. source

D
main wrapper

D
user wrapper

{
Clang with custom
link-time-optimizations

D
partial libc

Ö
exec.

¾
GPU

D
offload lib.

Û
RPC thread

Fig. 2: Overview of the compilation and execution path of the direct GPU com-
pilation framework introduced by Tian et al. [20] and the extended work [21].
The figure is from the work [21].

(also depicted in Fig. 2) that acts as the new host entry point. The main wrapper
first maps all program arguments to the device so that the user code can access
them and then invokes the user’s main function. To avoid conflicts with the
existing main function, the user’s main function is renamed to __user_main (as
illustrated in Fig. 3). The new host entry point must be compiled and linked
with all other user source files into the executable by the user.

#pragma omp begin declare target device_type(nohost)
int main(int, char *[]) asm("__user_main");

Fig. 3: User wrapper header to take all user code as device code and rename main
function to __user_main.

3 Methodology

This section introduces a new compiler driver wrapper designed to simplify the
use of the direct compilation scheme. It then discusses the comprehensive han-
dling of different main functions, followed by the test suite and system config-
uration employed in the exploration of the limits of generic code execution on
GPUs using the direct compilation scheme.

Title Suppressed Due to Excessive Length 5

3.1 Compiler Driver Wrapper

As described in Section 2, the direct GPU compilation scheme involves three
steps: 1) compiling user source files with a user wrapper header included; 2)
compiling the loader; and 3) linking the object files of user code and loader.
However, the additional second step makes it difficult to seamlessly integrate the
compilation scheme into build systems like CMake without significant changes
to the configuration or build script.

To address this limitation, we have developed a solution by implementing
a compiler driver wrapper, called clang-gpu and clang-gpu++, for C and C++
compilation, respectively. When the driver is used in compilation-only mode (-c),
the wrapper forwards all arguments to the invocation of clang/clang++ as well as
all necessary extra compilation flags. Otherwise, the wrapper first compiles the
loader and then adds the loader object file to the invocation of clang/clang++ as
an additional input file. With this approach, users can use clang-gpu and clang
-gpu++ as a regular compiler in build systems without requiring any changes.

3.2 Handling Different main Functions

In a host environment, a program must contain a global function named main
, which serves as the designated start of the program. In C++, this function
has one of two forms: int main(); or int main(int argc, char *argv[]);. The
C language also allows the form void main();.

As mentioned in Section 2, the user’s main function is renamed to to __user_main
to avoid ambiguity. However, this approach assumes that all users’ main functions
are in the form of int main(int argc, char *argv[]);, which may not always be
the case and can lead to a compile error due to a conflict declaration of a function.

To address this issue, we implemented a compiler pass that “canonicalizes”
the main function to the form int main(int argc, char *argv[]); and renames
it accordingly. This approach ensures that the loader can correctly invoke the
user’s main function, regardless of its original form.

3.3 Test Suite and System Configuration

We used LLVM’s test-suite to test the correctness and performance of the
compilation scheme. This suite includes benchmarks and test programs, and
provides tools to collect metrics such as benchmark runtime, compilation time,
and code size. The suite includes several categories of tests, including:

– SingleSource: Contains single-file test programs.
– MultiSource: Includes entire programs with multiple source files.
– MicroBenchmarks: Programs using the google-benchmark library. The pro-

grams define functions that are run multiple times until the measurement
results are statistically significant.

– External: Contains descriptions and test data for code that cannot be di-
rectly distributed with the test-suite. The most prominent members of this
directory are the SPEC CPU benchmark suites.

6 S. Tian, B. Chapman, et al.

– Bitcode: These tests are mostly written in LLVM bitcode.
– CTMark: Contains symbolic links to other benchmarks forming a representa-

tive sample for compilation performance measurements.

We chose not to perform runtime performance evaluation in this paper, as
this has been extensively studied in prior work [20, 21]. We did not use the
Bitcode tests, as these are written in LLVM bitcode, which is target dependent
and can not be directly used for GPU testing.

Our system consisted of an NVIDIA A100 Tensor Core GPU (40GB) with
AMD EPYC 7532 processors (32 cores with hyper-threading disabled) and 256
GB DDR4 RAM. We used CUDA 11.8.0 and compiled the entire test suite using
the default configuration for release build. Fig. 4 shows how we configured, built,
and executed the test suite.

$ cmake -G Ninja -S llvm-test-suite \
-DCMAKE_C_COMPILER=clang-gpu -DCMAKE_CXX_COMPILER=clang-gpu++

$ ninja -k 0
$ llvm-lit -v .

Fig. 4: Commands used to configure, build, and run the test suite. The compiler
driver wrappers are used as compilers for C/C++ and there is no extra CMake
configuration arguments nor changes in CMake files required.

4 Results and Analysis

The results of each subdirectory are presented in Fig. 5. In the subsequent sec-
tions, we delve into a detailed analysis of the different errors encountered, dis-
cussing its root causes and potential solutions.

4.1 Test Case Issue

We identified some issues in the test suite, such as the incorrect use of parallel
for in the test case SingleSource/Benchmarks/SmallPT/smallpt.cpp, which caused
a compile error (as shown in Fig. 6). This issue was not previously revealed be-
cause OpenMP was not enabled when compiling the SingleSource subdirectory.
Another example is in MultiSource/Applications/sgefa/driver.c, where malloc
is declared as char *malloc();, causing conflicting types for the function.

After fixing those issues, we got seven more passing tests: four in MultiSource
/Applications and three in MultiSource/Benchmarks.

4.2 Compiler/Runtime Bug

We uncovered several bugs throughout the compiler, spanning front-end code
generation, middle-end optimization, backend code generation, and runtime li-
brary. These bugs were discovered when assertions were triggered during compile

Title Suppressed Due to Excessive Length 7

Sub Directory Passed Failed Rate (%)
SingleSource 1641 185 89.9
MultiSource 125 75 62.5

CTMark 3 7 30
MicroBenchmarks 0 18 0

(a) Number of test cases and their compilation results in each subdirectory.

Sub Directory Passed Failed Rate (%)
SingleSource 1641 0 100.0
MultiSource 5 120 4.0

CTMark 0 3 0.0

(b) Execution results of passed cases in Fig. 5a.

Fig. 5: Number of passed and failed test cases in each sub directory.

#pragma omp parallel for schedule(dynamic, 1) private(r)
fprintf(stderr,"Rendering (%d spp)\n",samps*4);

Fig. 6: Incorrect use of parallel for in the test case SingleSource/Benchmarks/
SmallPT/smallpt.cpp that causes compile error.

or link time, indicating that certain errors were not caught beforehand and that
certain assumptions made during development did not hold.

For example, while compiling the test case CTMark/ClamAV, clang crashed be-
cause the user code did not specify a size for a variable length array (VLA) in
a way that was handled. The source excerpt is shown in Fig. 7. Despite of fact
that the size of the array dents is a compile-time constant, rather than a literal,
this error should have been detected earlier and an appropriate error message
should have been produced, especially since VLAs are not currently supported
when targeting GPUs (will be discussed in Section 4.6).

Another bug we encountered during our investigation was related to the
LLVM Attributor framework. This bug manifests as an assertion error when
compiling the test case CTMark/tramp3d-v4, as depicted in Fig. 8.

The majority of runtime failures shown in Fig. 5b were caused by illegal mem-
ory access. These failures can arise from various issues, including miscompilation
or a faulty device runtime library. Further investigation is required to pinpoint
the exact cause. Meanwhile, the other runtime failures were caused by issues in
the automatic RPC implementation, where external functions were invoked on
the host but the pointer arguments were not handled correctly.

In addition to the aforementioned bugs, we observed limitations in handling
inline assembly and compiler intrinsics that are specifically target-dependent.
Operations such as AVX512, which are specific to certain targets, are not portable
by default. If inline assembly used in the code is not supported by the target,
the compiler backend will crash instead of emitting an error. We will delve into
this topic further in Section 4.8.

8 S. Tian, B. Chapman, et al.

FAILED: CTMark/ClamAV/CMakeFiles/clamscan.dir/libclamav_readdb.c.o
...
clang-17: llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp:2188:
clang::CodeGen::CodeGenFunction::VlaSizePair
clang::CodeGen::CodeGenFunction::getVLASize(const clang::

VariableArrayType*):
Assertion ‘vlaSize && "no size for VLA!"’ failed.

(a) The assertion hit by clang.

/* MultiSource/Applications/ClamAV/libclamav_readdb.c */
static int cli_loaddbdir_l(...) {
...
const unsigned MAX_DIRENTS = 20;
struct dirent dents[MAX_DIRENTS];
...

(b) The corresponding source code caused the crash.

Fig. 7: clang crashed becasue an assertion is hit (top) for the source code shown
in the bottom. Given the target does not support VLAs, an error should have
been raised earlier.

FAILED: CTMark/tramp3d-v4/CMakeFiles/tramp3d-v4.dir/tramp3d-v4.cpp.o
...
clang-17:
llvm-project/llvm/lib/Transforms/IPO/AttributorAttributes.cpp:1536:
{anonymous}::AAPointerInfoFloating::updateImpl(llvm::Attributor&)::
<lambda(llvm::Value*, llvm::Value*, bool&)>:
Assertion ‘!PtrOI.isUnassigned() && "Cannot pass through if the input Ptr

was not visited!"’ failed.

Fig. 8: clang crashed becasue an assertion is hit in LLVM’s Attributor framework.

4.3 External Global Variable

Some header files contain external global variables, such as extern std::ostream
cout; from <iostream> and extern char *optarg; from <unistd.h>. While in

the extended work [21] external function calls are replaced with host RPC calls
automatically by the compiler, external global variables are not handled in the
same way. To address this, one possible solution is to replace access to an external
global variable with host RPC calls, similar to the approach used for external
functions. However, it may be difficult to handle pointers such as extern char
*optarg;. Alternatively, with the emerging unified memory design where both

CPU and GPU use the same memory, this will no longer be an issue.

4.4 Variadic Function

Variadic functions, such as fprintf, are commonly used in CPU code. However,
they are not supported in GPU due to the lack of support from application

Title Suppressed Due to Excessive Length 9

binary interface (ABI). The extended work [21] managed to support external
variadic functions in two steps: first, by creating a non-variadic wrapper on the
device solely for host RPC calls, and second, by creating a non-variadic wrapper
on the host side that recovers the call site. However, this approach may not work
if users handle variadic arguments explicitly in the code, as shown in Fig. 9.

// CTMark/sqlite3/sqlite3.c
static int getDigits(const char *zDate, ...){
va_list ap;
...
va_start(ap, zDate);
do{
N = va_arg(ap, int);
min = va_arg(ap, int);
max = va_arg(ap, int);
nextC = va_arg(ap, int);
pVal = va_arg(ap, int*);
...

}while(nextC);
...
va_end(ap);
return cnt;

}

Fig. 9: An example of explict handling of variadic arguments in the test case
CTMark/sqlite3.

To solve this issue, a proper ABI for variadic functions needs to be defined.
Some exploration has already been done in this area. For instance, NVIDIA
GPUs can support the printf variadic function. In this case, the front end creates
a structure at the call site that accommodates all variadic arguments, and then
lowers the function call to void vprintf(const char *fmt, void *args);, where
the second argument is a pointer to the structure. Fig. 10 demonstrates how this
procedure works.

This approach can be extended to support the explicit handling of variadic
functions, where both the caller and callee are compiled by the same compiler.

int a;
float b;
char *c;

printf("%d %f %s", a, b, c);

(a) Original function call to printf.

int a;
float b;
char *c;
struct {int a; float b; char *c;} s;
s.a = a; s.b = b; s.c = c;
vprintf("%d %f %s", &s);

(b) Pseudo code after lowering by clang.
Fig. 10: The lowering of printf in clang for NVIDIA GPUs.

10 S. Tian, B. Chapman, et al.

4.5 C++ Exception Handling

Exceptions are a mechanism for handling exceptional circumstances, such as
runtime errors, in programs by transferring control to special functions called
handlers. An exception is thrown using the throw keyword from inside a try
block. Exception handlers are declared with the keyword catch, which must be
placed immediately after the try block. However, no GPU compilers supports
arbitrary C++ exception handling.

Full support for exceptions requires features such as stack unwinding, which
are not yet available on GPUs. Moreover, the inherent dynamically divergent
execution can cause problems on specific (lock step) targets. A reasonable al-
ternative solution is to lower the throw expression to a built-in trap that aborts
GPU execution. The catch statement then becomes a no-op, effectively equiva-
lent to using the -fno-exceptions compiler flag except that the syntactic throw
and catch statements would still be allowed.

4.6 Variable Length Array

Currently, GPU targets impose a limitation on stack allocation, requiring a stat-
ically known size. This constraint poses a challenge when dealing with variable
length arrays that necessitate dynamic-sized stack allocation. Although NVIDIA
has introduced a preview feature in PTX 7.3 that supports dynamic stack allo-
cation [12], the compiler does not yet provide full support for this feature. To
overcome this limitation, an alternative solution is to replace dynamic stack allo-
cation with dynamic heap allocation. To ensure proper memory management, it
becomes necessary to insert cleanup code that handles the deallocation of these
dynamically allocated variables as their scope is left.

4.7 Unsupported Data Type

There are data types, such as long double, that are not supported by GPUs.
Similar to the host side when the target CPU does not support certain types,
software emulation can also be applied on GPUs. Moreover, more data types are
likely to be supported in the future as GPUs evolves. For now, clang will allow
long double and other unsuppoprted types to appear, e.g., as part of struct dec-
larations, but it will not allow use of them, e.g., as part of arithmetic operations.

4.8 Inline Assembly

As mentioned earlier, both inline assembly and compiler intrinsics are inherently
target-dependent and lack portability by default. To address this challenge, a
potential solution is to translate the assembly code into the corresponding target-
specific assembly code. This approach has been successfully employed in binary
translation projects such as Apple’s Rosetta 2 and Intel’s Houdini, enabling
cross-architecture execution. Similarly, for compiler intrinsics, a wrapper layer
can be introduced to map them to a code sequence that is valid on the target

Title Suppressed Due to Excessive Length 11

architecture. This approach allows the intrinsic functions to be adapted and
utilized in the context of the specific target architecture. A relevant study by
Doerfert et al. [6] proposes techniques for mapping intrinsics to target-specific
code sequences, offering a means to achieve compatibility across architectures.
The OpenPOWER group provides functional equivalents of Intel MMX, SSE,
and AVX intrinsic functions commonly used in Linux applications [17].

5 Related Work

Several prior works have investigated the execution of host programs on GPUs.
Silberstein et al. [16] proposed direct access to the host’s file system from GPU
code and implemented an RPC protocol to facilitate data transfers between
the CPU and GPU. Damschen et al. [4] explored transparent acceleration of
binary applications using heterogeneous computing resources without manual
porting or developer-provided hints. Matsumura et al. [9] introduced an auto-
mated stencil framework that transforms and optimizes stencil patterns in C
source code, generating corresponding CUDA code. Mikushin et al. [11] pre-
sented a parallelization framework that detects parallelism and generates target
code for both X86 CPUs and NVIDIA GPUs. To support functions that cannot
be natively executed on GPUs, they replaced function calls in LLVM with an
interface that uses a foreign function interface to execute the requested functions
on the host. Jablin et al. [8] proposed a fully automatic system for managing
and optimizing CPU-GPU communication, comprising a runtime library and
compiler transformations. Pakin et al. [15] proposed reverse-acceleration model
where the accelerators orchestrate the computation, offloading work that can not
be accelerated to the general-purpose processors. Tian et al. [20] were the first
to attempt running the entire host program on a GPU using OpenMP target
offloading. They augmented the compiler with a custom link-time optimization
pass to generate RPC calls automatically, eliminating the need for stub code
from users and expanding source parallelism to the entire GPU device. Their
work later has been extended in [21], where the compiler was augmented with
a custom link-time optimization pass, which can automatically generate RPC
calls without the need for stub code from users, and expand source parallelism
to the entire GPU device.

In recent years, researchers have focused on compiler and runtime optimiza-
tion for OpenMP after the introduction of target offloading in OpenMP 4.0.
Bertolli et al. [2, 3] enabled OpenMP offloading to GPUs in LLVM. Flang, the
PGI Fortran front-end, also supports OpenMP offloading through the LLVM
OpenMP runtime [13]. Antão et al. [1] introduced front-end-based optimizations
for NVIDIA GPUs, reducing register usage and avoiding idle threads. Doerfert
et al. [5] presented the TRegion interface, enabling more kernels to execute in
SPMD mode. Tian et al. [19] introduced runtime support for concurrent exe-
cution of OpenMP target tasks. Yviquel et al. [22] presented a framework for
using the OpenMP programming model in distributed memory environments,
combining OpenMP directives and MPI communication. Huber et al. [7] devel-

12 S. Tian, B. Chapman, et al.

oped OpenMP-aware program analyses and optimizations for efficient execution
of CPU-centric parallelism on GPUs. Ozen and Wolfe [14] demonstrated its im-
plementation of the loop directive on NVIDIA GPUs.

6 Summary

In this paper we investigated the feasibility and effectiveness of executing CPU
code on GPUs using the direct GPU compilation scheme. We highlighted the
challenges and limitations in the current GPU compiler toolchain and hardware
support. In addition, we discussed potential solutions to enable broader GPU
execution capabilities. The findings can contribute to advancing GPU accelera-
tion and facilitating the utilization of GPUs for a wider range of code without
significant modifications from application developers.

This work highlights the effectiveness of the compilation scheme introduced
in [20, 21], which enables straightforward execution of CPU codes on GPUs,
to test “GPU compilers” using a vast collection of existing CPU code. In this
initial study alone we detected multiple compiler bugs and categorized other the
shortcomings; both will lead to improved capabilities and robustness.

Acknowledgement

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of two U.S. Department of Energy organizations (Office
of Science and the National Nuclear Security Administration) responsible for
the planning and preparation of a capable exascale ecosystem, including soft-
ware, applications, hardware, advanced system engineering, and early testbed
platforms, in support of the nation’s exascale computing imperative. The views
and opinions of the authors do not necessarily reflect those of the U.S. gov-
ernment or Lawrence Livermore National Security, LLC neither of whom nor
any of their employees make any endorsements, express or implied warranties or
representations or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of the information contained herein. This work was
in parts prepared by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 (LLNL-CONF-827970). We also gratefully acknowledge
the computing resources provided and operated by the Joint Laboratory for
System Evaluation at Argonne National Laboratory.

References

[1] Antão, S.F., Bataev, A., Jacob, A.C., Bercea, G., Eichenberger, A.E., Rokos,
G., Martineau, M., Jin, T., Ozen, G., Sura, Z., Chen, T., Sung, H., Bertolli,
C., O’Brien, K.: Offloading Support for OpenMP in Clang and LLVM.
In: Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-
HPC@SC), November 14, 2016, pp. 1–11, IEEE Computer Society, Salt Lake

Title Suppressed Due to Excessive Length 13

City, UT, USA (2016), https://doi.org/10.1109/LLVM-HPC.2016.006,
URL https://doi.org/10.1109/LLVM-HPC.2016.006

[2] Bertolli, C., Antão, S., Bercea, G., Jacob, A.C., Eichenberger, A.E., Chen,
T., Sura, Z., Sung, H., Rokos, G., Appelhans, D., O’Brien, K.: Integrat-
ing GPU support for OpenMP offloading directives into Clang. In: Work-
shop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC@SC),
November 15, 2015, pp. 5:1–5:11, ACM, Austin, Texas, USA (2015),
https://doi.org/10.1145/2833157.2833161, URL https://doi.org/
10.1145/2833157.2833161

[3] Bertolli, C., Antão, S., Eichenberger, A.E., O’Brien, K., Sura, Z., Jacob,
A.C., Chen, T., Sallenave, O.: Coordinating GPU threads for OpenMP 4.0
in LLVM. In: Workshop on the LLVM Compiler Infrastructure in HPC
(LLVM-HPC@SC), November 17, 2014, pp. 12–21, IEEE Computer Soci-
ety, New Orleans, LA, USA (2014), https://doi.org/10.1109/LLVM-HPC.
2014.10, URL https://doi.org/10.1109/LLVM-HPC.2014.10

[4] Damschen, M., Riebler, H., Vaz, G., Plessl, C.: Transparent offloading
of computational hotspots from binary code to Xeon Phi. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE) March
9-13, 2015, pp. 1078–1083, ACM, Grenoble, France (2015), URL http:
//dl.acm.org/citation.cfm?id=2757063

[5] Doerfert, J., Diaz, J.M.M., Finkel, H.: The TRegion Interface and
Compiler Optimizations for OpenMP Target Regions. In: International
Workshop on OpenMP (IWOMP), September 11-13, 2019, vol. 11718,
pp. 153–167, Springer, Auckland, New Zealand (2019), https://doi.
org/10.1007/978-3-030-28596-8_11, URL https://doi.org/10.1007/
978-3-030-28596-8_11

[6] Doerfert, J., Jasper, M., Huber, J., Abdelaal, K., Georgakoudis, G., Scog-
land, T., Parasyris, K.: Breaking the vendor lock: Performance portable
programming through openmp as target independent runtime layer. In: In-
ternational Conference on Parallel Architectures and Compilation Tech-
niques (PACT), October 8-12, 2022, pp. 494–504, ACM, Chicago, Illi-
nois (2022), https://doi.org/10.1145/3559009.3569687, URL https:
//doi.org/10.1145/3559009.3569687

[7] Huber, J., Cornelius, M., Georgakoudis, G., Tian, S., Diaz, J.M.M., Dinel,
K., Chapman, B.M., Doerfert, J.: Efficient Execution of OpenMP on GPUs.
In: International Symposium on Code Generation and Optimization (CGO),
April 2-6, 2022, pp. 41–52, IEEE, Seoul, Republic of Korea (2022), https://
doi.org/10.1109/CGO53902.2022.9741290, URL https://doi.org/10.
1109/CGO53902.2022.9741290

[8] Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., Au-
gust, D.I.: Automatic CPU-GPU communication management and opti-
mization. In: ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), June 4-8, 2011, pp. 142–151, ACM,
San Jose, CA, USA (2011), https://doi.org/10.1145/1993498.1993516,
URL https://doi.org/10.1145/1993498.1993516

https://doi.org/10.1109/LLVM-HPC.2016.006
https://doi.org/10.1109/LLVM-HPC.2016.006
https://doi.org/10.1109/LLVM-HPC.2016.006
https://doi.org/10.1145/2833157.2833161
https://doi.org/10.1145/2833157.2833161
https://doi.org/10.1145/2833157.2833161
https://doi.org/10.1145/2833157.2833161
https://doi.org/10.1109/LLVM-HPC.2014.10
https://doi.org/10.1109/LLVM-HPC.2014.10
https://doi.org/10.1109/LLVM-HPC.2014.10
https://doi.org/10.1109/LLVM-HPC.2014.10
https://doi.org/10.1109/LLVM-HPC.2014.10
http://dl.acm.org/citation.cfm?id=2757063
http://dl.acm.org/citation.cfm?id=2757063
https://doi.org/10.1007/978-3-030-28596-8_11
https://doi.org/10.1007/978-3-030-28596-8_11
https://doi.org/10.1007/978-3-030-28596-8_11
https://doi.org/10.1007/978-3-030-28596-8_11
https://doi.org/10.1007/978-3-030-28596-8_11
https://doi.org/10.1007/978-3-030-28596-8_11
https://doi.org/10.1145/3559009.3569687
https://doi.org/10.1145/3559009.3569687
https://doi.org/10.1145/3559009.3569687
https://doi.org/10.1145/3559009.3569687
https://doi.org/10.1109/CGO53902.2022.9741290
https://doi.org/10.1109/CGO53902.2022.9741290
https://doi.org/10.1109/CGO53902.2022.9741290
https://doi.org/10.1109/CGO53902.2022.9741290
https://doi.org/10.1109/CGO53902.2022.9741290
https://doi.org/10.1109/CGO53902.2022.9741290
https://doi.org/10.1145/1993498.1993516
https://doi.org/10.1145/1993498.1993516
https://doi.org/10.1145/1993498.1993516

14 S. Tian, B. Chapman, et al.

[9] Matsumura, K., Zohouri, H.R., Wahib, M., Endo, T., Matsuoka, S.:
AN5D: Automated Stencil Framework for High-Degree Temporal Block-
ing on GPUs. In: International Symposium on Code Generation and Op-
timization (CGO), February, 2020, pp. 199–211, ACM, San Diego, CA,
USA (2020), https://doi.org/10.1145/3368826.3377904, URL https:
//doi.org/10.1145/3368826.3377904

[10] Mayer, F., Knaust, M., Philippsen, M.: OpenMP on FPGAs - A Survey. In:
International Workshop on OpenMP (IWOMP), September 11-13, 2019,
vol. 11718, pp. 94–108, Springer, Auckland, New Zealand (2019), https:
//doi.org/10.1007/978-3-030-28596-8_7, URL https://doi.org/10.
1007/978-3-030-28596-8_7

[11] Mikushin, D., Likhogrud, N., Zhang, E.Z., Bergstrom, C.: Kernelgen -
the design and implementation of a next generation compiler platform
for accelerating numerical models on gpus. In: International Parallel &
Distributed Processing Symposium Workshops (IPDPSW), May 19-23,
2014, pp. 1011–1020, IEEE Computer Society, Phoenix, AZ, USA (2014),
https://doi.org/10.1109/IPDPSW.2014.115, URL https://doi.org/
10.1109/IPDPSW.2014.115

[12] NVIDIA: Parallel Thread Execution ISA Version 8.1. https:
//docs.nvidia.com/cuda/parallel-thread-execution/index.html#
stack-manipulation-instructions-alloca (2023)

[13] Özen, G., Atzeni, S., Wolfe, M., Southwell, A., Klimowicz, G.: OpenMP
GPU Offload in Flang and LLVM. In: Workshop on the LLVM Compiler In-
frastructure in HPC (LLVM-HPC@SC), November 13, 2018, pp. 1–9, IEEE,
Dallas, TX, USA (2018), https://doi.org/10.1109/LLVM-HPC.2018.
8639434, URL https://doi.org/10.1109/LLVM-HPC.2018.8639434

[14] Ozen, G., Wolfe, M.: Performant Portable OpenMP. In: ACM SIGPLAN
International Conference on Compiler Construction (CC), April 2 - 3,
2022, pp. 156–168, ACM, Seoul, South Korea (2022), https://doi.org/
10.1145/3497776.3517780, URL https://doi.org/10.1145/3497776.
3517780

[15] Pakin, S., Lang, M., Kerbyson, D.J.: The Reverse-Acceleration Model
for Programming Petascale Hybrid Systems. IBM Journal of Research
and Development 53(5), 8 (2009), https://doi.org/10.1147/JRD.2009.
5429074, URL https://doi.org/10.1147/JRD.2009.5429074

[16] Silberstein, M., Ford, B., Keidar, I., Witchel, E.: GPUfs: Integrating A File
System with GPUs. In: Architectural Support for Programming Languages
and Operating Systems (ASPLOS), March 16-20, 2013, pp. 485–498, ACM,
Houston, TX, USA (2013), https://doi.org/10.1145/2451116.2451169,
URL https://doi.org/10.1145/2451116.2451169

[17] System Software Work Group, OpenPOWER Foundation: Vector Intrinsics
Porting Guide. https://openpowerfoundation.org/specifications/
vectorintrinsicportingguide/ (2018)

[18] Tian, S., Chesterfield, J., Doerfert, J., Chapman, B.M.: Experience Re-
port: Writing a Portable GPU Runtime with OpenMP 5.1. In: In-
ternational Workshop on OpenMP (IWOMP), September 14-16, 2021,

https://doi.org/10.1145/3368826.3377904
https://doi.org/10.1145/3368826.3377904
https://doi.org/10.1145/3368826.3377904
https://doi.org/10.1145/3368826.3377904
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1007/978-3-030-28596-8_7
https://doi.org/10.1109/IPDPSW.2014.115
https://doi.org/10.1109/IPDPSW.2014.115
https://doi.org/10.1109/IPDPSW.2014.115
https://doi.org/10.1109/IPDPSW.2014.115
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#stack-manipulation-instructions-alloca
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#stack-manipulation-instructions-alloca
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#stack-manipulation-instructions-alloca
https://doi.org/10.1109/LLVM-HPC.2018.8639434
https://doi.org/10.1109/LLVM-HPC.2018.8639434
https://doi.org/10.1109/LLVM-HPC.2018.8639434
https://doi.org/10.1109/LLVM-HPC.2018.8639434
https://doi.org/10.1109/LLVM-HPC.2018.8639434
https://doi.org/10.1145/3497776.3517780
https://doi.org/10.1145/3497776.3517780
https://doi.org/10.1145/3497776.3517780
https://doi.org/10.1145/3497776.3517780
https://doi.org/10.1145/3497776.3517780
https://doi.org/10.1145/3497776.3517780
https://doi.org/10.1147/JRD.2009.5429074
https://doi.org/10.1147/JRD.2009.5429074
https://doi.org/10.1147/JRD.2009.5429074
https://doi.org/10.1147/JRD.2009.5429074
https://doi.org/10.1147/JRD.2009.5429074
https://doi.org/10.1145/2451116.2451169
https://doi.org/10.1145/2451116.2451169
https://doi.org/10.1145/2451116.2451169
https://openpowerfoundation.org/specifications/vectorintrinsicportingguide/
https://openpowerfoundation.org/specifications/vectorintrinsicportingguide/

Title Suppressed Due to Excessive Length 15

vol. 12870, pp. 159–169, Springer, Bristol, UK (2021), https://doi.
org/10.1007/978-3-030-85262-7_11, URL https://doi.org/10.1007/
978-3-030-85262-7_11

[19] Tian, S., Doerfert, J., Chapman, B.M.: Concurrent Execution of De-
ferred OpenMP Target Tasks with Hidden Helper Threads. In: Languages
and Compilers for Parallel Computing (LCPC), October 14-16, 2020,
vol. 13149, pp. 41–56, Springer, Stony Brook, NY, USA (2020), https:
//doi.org/10.1007/978-3-030-95953-1_4, URL https://doi.org/10.
1007/978-3-030-95953-1_4

[20] Tian, S., Huber, J., Parasyris, K., Chapman, B.M., Doerfert, J.: Direct
GPU Compilation and Execution for Host Applications with OpenMP
Parallelism. In: Workshop on the LLVM Compiler Infrastructure in
HPC (LLVM-HPC@SC), November 13-18, 2022, pp. 43–51, IEEE, Dal-
las, TX, USA (2022), https://doi.org/10.1109/LLVM-HPC56686.2022.
00010, URL https://doi.org/10.1109/LLVM-HPC56686.2022.00010

[21] Tian, S., Scogland, T., Chapman, B., Doerfert, J.: GPU First – Execution
of Legacy CPU Codes on GPUs (2023)

[22] Yviquel, H., Pereira, M., Francesquini, E., Valarini, G., Leite, G., Rosso,
P.H.D.F., Ceccato, R., Cusihualpa, C., Dias, V., Rigo, S., Souza, A.,
Araujo, G.: The OpenMP Cluster Programming Model. In: Workshop of
the International Conference on Parallel Processing (ICPP), 29 August
2022 - 1 September 2022, pp. 17:1–17:11, ACM, Bordeaux, France (2022),
https://doi.org/10.1145/3547276.3548444, URL https://doi.org/
10.1145/3547276.3548444

https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1109/LLVM-HPC56686.2022.00010
https://doi.org/10.1109/LLVM-HPC56686.2022.00010
https://doi.org/10.1109/LLVM-HPC56686.2022.00010
https://doi.org/10.1109/LLVM-HPC56686.2022.00010
https://doi.org/10.1109/LLVM-HPC56686.2022.00010
https://doi.org/10.1145/3547276.3548444
https://doi.org/10.1145/3547276.3548444
https://doi.org/10.1145/3547276.3548444
https://doi.org/10.1145/3547276.3548444

	Exploring the Limits of Generic Code Execution on GPUs via Direct (OpenMP) Offload

