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Abstract. Wide cross-vendor support for the OpenMP API makes it
appealing for portable parallel programming on CPUs and GPUs. While
its use on CPUs is well-established, perceived or actual performance gaps
relative to native APIs like CUDA and HIP have limited its adoption on
GPUs. Previous work has shown that for simple parallel patterns such as
single level loops, recent OpenMP implementations can be competitive
in terms of performance against those native APIs. For more complex
use cases, such as hierarchical parallelism, extensions to OpenMP have
been necessary to attain the performance of those native APIs on discrete
GPUs like the AMD Instinct™ MI250X and NVIDIA A100. In this
paper, we evaluate and extend the use of these extensions in the Kokkos
C++ performance portability framework on newer converged CPU-GPU
architectures, the AMD Instinct™ MI300A and NVIDIA GH200. Our
results show that the extensions help bridge performance gaps between
native API and OpenMP in these architectures, and we identify areas
that still have room for improvement.

Keywords: GPU · Kokkos · LLVM · OpenMP

1 Introduction

Support for accelerator programming in the OpenMP® API dates back over a
decade to version 4.0, having been refined in subsequent versions of the specifica-
tion. Yet while OpenMP remains widely used on CPU architectures, its use on
GPUs remains limited. One contributing factor is that OpenMP’s accelerator
support has acquired a reputation for lower performance compared to native
vendor-specific programming models, i.e., CUDA and HIP. As shown in a recent
study comparing OpenMP with those models, recent OpenMP implementations
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can exhibit commensurate performance for simple kernels of one-level loops, but
they struggle with more complex patterns such as hierarchical parallelism [7].
Additionally, native models better exploit features such as shuffle operations
and the shared memory local to subunits of the GPU. Moreover, the burden of
providing library support for full OpenMP semantics on the GPU adds overhead
cost compared to the simpler grid-based approach of native models.

The feature and performance gaps between OpenMP accelerator support and
native models have motivated a series of extensions in the LLVM® OpenMP
implementation. These include runtime calls to access local dynamic shared
memory, to leverage shuffle operations for faster reductions, and to express
parallelism in a grid-based “kernel mode” similar to HIP and CUDA [17]. A
previous evaluation of these extensions as applied to the OpenMPTarget back-
end code of the Kokkos C++ performance portability library [18] showed how
they help to close the gap with native models [8].

As the OpenMP API and its implementations evolve to better support
accelerators, the devices themselves are also evolving. Beyond improvements in
processing power and memory bandwidth, some vendors have also introduced
converged architectural designs that integrate CPU and GPU components, such
as the NVIDIA Grace Hopper Superchip [5, 3] and AMD Instinct™ MI300A
Accelerator [14, 15]. In this paper, we explore the impact of LLVM’s OpenMP
extensions on these newer architectures. Moreover, we are able to use the release
version of LLVM Clang in this study, as all extensions used in the prior paper,
including kernel mode, have now been incorporated into the release series. Once
again, the Kokkos library is the vehicle for comparison, allowing the same
application level code to be transformed via C++ template metaprogramming to
use equivalent native (HIP/CUDA) and OpenMPTarget backend implementations
of Kokkos. Beyond the enhancements of the previous study [8], we also expand
the use of the extensions in the Kokkos-OpenMPTarget backend to additional
parallel patterns, and we present performance results for the newer and older
GPU architectures.

2 Background

This paper uses the Kokkos library and its OpenMPTarget backend implementa-
tion as a vehicle to evaluate performance of LLVM OpenMP extensions on recent
converged CPU+GPU architectures compared to previous generation discrete
GPUs. In this section we provide basic descriptions of Kokkos, its OpenMPTarget
backend, and the LLVM OpenMP extensions. More details on these topics can
be found in previous work [8].

2.1 Kokkos and its OpenMPTarget Backend

Kokkos is a performance portability library that enables a single C++ codebase
to run efficiently across a wide range of GPUs and CPUs [18]. It is widely adopted
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in scientific applications, particularly those developed under the United States
Exascale Computing Project (ECP), as a preferred programming model.

For a given device, the Kokkos library maps to a backend implementation
that supports that device. Kokkos provides native backends for all three major
server-class GPU vendors: NVIDIA, AMD, and Intel, as well as an OpenMP
CPU backend. The OpenMPTarget backend is considered a secondary option
for GPU support, serving several purposes: 1) risk mitigation, 2) preparation for
future hardware that may adopt OpenMP as its primary programming model,
and 3) interoperability with third party libraries using OpenMP GPU offload. For
the purposes of evaluating new OpenMP features, the Kokkos OpenMPTarget
backend provides a convenient way to test OpenMP features using the same code
against other programming model backends, such as HIP and CUDA.

2.2 LLVM OpenMP Extensions

In addition to the standard features included in the OpenMP specification,
OpenMP implementations can offer additional constructs, clauses, or runtime
routines as extensions, prefixed by ompx. LLVM OpenMP includes several such
extensions to help leverage GPU hardware in a way similar to native GPU
programming models.

Dynamic Shared Memory Support. One limitation of OpenMP as currently
specified is its inability to expose dynamically allocated memory as “shared”
among threads within an OpenMP team. Native GPU programming models,
such as CUDA and HIP, usually refer to this feature as dynamic shared memory.
Although OpenMP 6.0 recently brought support for sharing variables (with
static storage duration) among the threads of a team, it still lacks support
for sharing a dynamically sized memory buffer across team members. LLVM
OpenMP introduces an extension to address this limitation. Specifically, it adds a
new clause for the target directive, ompx_dyn_cgroup_mem(<N>), which provides a
memory buffer of N bytes per team that will be shared among the threads within
each team. In this way, OpenMP exposes a similar mechanism to that of CUDA
or HIP when requesting dynamic shared memory at kernel launch. Within the
target region, the llvm_omp_target_dynamic_shared_alloc routine can be used to
obtain a pointer to this shared memory buffer.

Kokkos exposes dynamic shared memory through what it refers to as scratch
memory, i.e., views created in its scratch_memory_space. Leveraging that LLVM
extension enables access to dynamic shared memory in the OpenMPTarget
backend, whereas previously, such buffers had to be allocated in the slower, more
distant global memory.

Notably, OpenMP has recently accepted a new clause and routine that enable
access to dynamic shared memory within target regions. This feature addition is
expected to be included in the upcoming OpenMP 6.1 specification.
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LLVM OpenMP Kernel Mode. While existing OpenMP provides a rich
set of parallel semantics, including a fork-join model and automatic workload
distribution, it relies on a substantial device runtime library to manage execution.
These runtime operations can introduce significant overhead and resource usage,
particularly on GPUs. This overhead has traditionally been considered unavoid-
able under the current OpenMP semantics [2]. To address this, LLVM OpenMP
introduces a set of extensions that allow OpenMP target regions to execute
in a “bare-metal” mode, also known as kernel mode [17]. This feature enables
OpenMP GPU code to be written in a single-instruction, multiple-threads (SIMT)
style, facilitating the transition of existing GPU code written in kernel languages
such as HIP and CUDA to OpenMP, while leveraging OpenMP’s portability
benefits. Additionally, OpenMP kernel mode requires only a minimal runtime
layer, significantly reducing overhead and potentially improving performance.

To that end, LLVM OpenMP provides the ompx_bare clause for the target
teams construct, which enables kernel mode for that target region [17]. This clause
configures the region to operate according to the SIMT model and prevents the
generation of code related to the OpenMP device runtime. Additionally, the clause
enables support for multidimensional OpenMP teams and leagues, similar to how
CUDA and HIP operate with blocks and grids. The num_teams and thread_limit
clauses are augmented to accept multidimensional sizes in the form of a list, and
new routines are provided to retrieve the multidimensional indexes and sizes
within the target regions. Fig. 3 shows an example of how to use the ompx_bare
clause in a target region. Notice that the target region does not use any explicit
parallel construct, as LLVM’s ompx_bare clause implicitly initiates parallelism
within each team.

With the addition of new extension routines for portable synchronization
and shuffle operations in LLVM OpenMP, it becomes possible to efficiently
implement multidimensional reductions. By relying on these capabilities, the
Kokkos OpenMPTarget backend implementation can logically map parallel pat-
terns like hierarchical parallelism in a manner similar to the CUDA and HIP
backends with fewer overheads compared to the previous implementation based
on teams distribute parallel for.

2.3 Exemplar Application Benchmarks

We use applications representing two different domains as exemplar workloads in
our study. The first, CGSolve, implements a conjugate gradient solver both in
Kokkos, enabling comparison of the various Kokkos backends (native HIP/CUDA
and OpenMPTarget), and directly in OpenMP. In the evaluation, we used sparse
matrices of size 150x150, 255x255, and 325x325, resulting in data sizes of 2GB,
11GB, and 22GB, respectively, as represented in compressed sparse row format.
The program performs 200 iterations of CGSolve. For this application, the direct
OpenMP implementation allows assessment of instances where the combination
of OpenMP and C++ abstractions in Kokkos may be handled sub-optimally by
the compiler. We focus on the spmv kernel, which dominates execution time. It
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exhibits hierarchical parallelism that has been challenging to perform efficiently
using OpenMP on GPUs [7, 8].

The TestSNAP proxy application [6] is modeled on Spectral Neighborhood
Analysis Potential (SNAP) computations in the LAMMPS molecular dynamics
simulation application. Our test problem simulates 2000 atoms with 26 neighbors
per atom over 100 timesteps. We report performance on the three kernels that
account for nearly all total execution time, two of which (ui and duarray) can
exploit dynamic shared memory and hierarchical parallelism in programming
models that support them well [8].

3 Applying OpenMP Extensions to Multidimensional
Kokkos Parallel Patterns

The Kokkos library provides an extensive set of parallel execution patterns
designed to efficiently exploit concurrency in applications. In our previous work,
we investigated the feasibility of implementing hierarchical parallelism within
the Kokkos-OpenMPTarget backend by leveraging LLVM OpenMP extensions.
Our earlier study specifically targeted complex parallel patterns, aiming to
demonstrate the potential for expressing CUDA/HIP-style hierarchical parallelism
directly through OpenMP extensions. Detailed explanations of how the LLVM
extensions are used in the backend can be found therein [8], and code for the
benchmark applications is available online5.

We intentionally excluded simpler Kokkos parallel patterns from our previous
investigation, as they typically map directly onto existing OpenMP directives. For
instance, a one-dimensional Kokkos parallel range pattern corresponds directly
to the OpenMP directive #pragma omp target teams distribute parallel for,
while multidimensional parallelism, represented by the Kokkos MDRange pattern,
can be implemented using OpenMP’s collapse clause.

In the workloads considered in our study, the TestSNAP application employs
the MDRange parallel pattern for its most computationally intensive kernel,
compute_yi. Although our previous enhancements to the Kokkos-OpenMPTarget
backend indirectly improved performance for TestSNAP, the kernel execution
remained significantly slower compared to native Kokkos backends. In this paper,
we directly implement the MDRange parallel pattern using LLVM’s OpenMP
extensions to further address these performance limitations.

Fig. 1 illustrates the use of MDRange parallelism within the Kokkos program-
ming model. All parallel patterns in Kokkos assume iterations in a pattern to
be independent. Hence the current Kokkos-OpenMPTarget backend implements
the MDRange policy described above using the OpenMP collapse clause. Fig. 2
shows a pseudocode representation of this implementation.

However, this implementation does not achieve performance comparable to
native Kokkos backends. To address this performance gap, we leveraged the LLVM
OpenMP extensions, enabling an implementation of the collapse functionality

5 https://github.com/kokkos/code-examples/tree/HiPC2024/papers/HiPC-2024
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1 // Creates a multidimensional iteration space of 3 levels.
2 // This will be created in the default execution space of Kokkos.
3 // The iteration space can be passed as parameters to the policy.
4 Kokkos::MDRangePolicy<Rank<3>> policy({begin_0,begin_1,begin_2},{end_0,

end_1,end_2});
5

6 // Creates a 3-level nested loop with the outermost iteration index
7 // starting with i and then j and k indexes for the subsequent
8 // iteration spaces.
9 Kokkos::parallel_for(policy, KOKKOS_LAMBDA ( const int i, const int j,

const int k ) {
10 ...
11 });

Fig. 1: MDRange parallel pattern in Kokkos.

1 #pragma omp target teams distribute parallel for collapse(3)
2 for (int i = begin_0; i < end_0; ++i)
3 for (int j = begin_1; j < end_1; ++j)
4 for (int k = begin_2; k < end_2; ++k)
5 {
6 ...
7 }

Fig. 2: MDRange implementation in the current Kokkos-OpenMPTarget backend.

analogous to that of HIP/CUDA. Fig. 3 presents our implementation of the three-
level nested loop MDRange parallel pattern using LLVM OpenMP extensions.

The current implementation employs a straightforward approach, flattening
the three nested loops into a single iteration space equal to the product of
the loop ranges, as illustrated in line 2 of Fig. 3. We use teams consisting of
128 threads, a configuration empirically determined to yield good performance
across all architectures in our benchmarks. Increasing team size further slightly
improves performance on AMD devices but degrades performance on NVIDIA
devices. Future studies may require tuning this parameter according to specific
architectural characteristics and kernel properties.

Line 5 computes the number of teams needed based on the selected team
size, carefully accounting for cases where the total iteration count is not evenly
divisible by the team size. Line 7 initiates the kernel execution with the calculated
grid dimensions. Lines 18–21 demonstrate how the original multidimensional
indices are recovered from the flattened iteration index.

As noted previously, the compute_yi kernel in TestSNAP utilizes the MDRange
parallel policy. Section 5.2 discusses the resulting performance of the kernel
implementation presented in Fig. 3.
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1 // Total elements
2 const int n = (end_0-begin_0) * (end_1-begin_1) * (end_2-begin_2);
3 if (!n) return; // Return if nothing needs to be done
4 const int team_size = 128;
5 int nteams = n / team_size + !!(n % team_size);
6

7 #pragma omp target teams ompx_bare num_teams(nteams) thread_limit(
team_size)

8 {
9 const Index blockIdx = ompx::block_id(ompx::dim_x);

10 const Index blockDimx = ompx::block_dim(ompx::dim_x);
11 const Index threadIdx = ompx::thread_id(ompx::dim_x);
12 const Index tid = blockIdx * blockDimx + threadIdx;
13

14 if (tid < n)
15 {
16 Index iter_ = tid;
17

18 const int i = iter_ / (end_2*end_1) + begin_0;
19 const int i1_ = iter_ % (end_2*end_1);
20 const Index j = i1_ / end_2 + begin_1;
21 const Index k = i1_ % end_2 + begin_2;
22

23 ...
24 }
25 }

Fig. 3: MDRange implementation using LLVM OpenMP extensions in Kokkos-
OpenMPTarget.

4 Experimental Setup

The evaluation measures the performance of the Kokkos OpenMPTarget back-
end with and without the LLVM OpenMP extensions, comparing with native
(HIP/CUDA) Kokkos backends, across different GPU architectures. Establishing
a notion of overall equivalency across the GPU lines of different vendors can
be challenging, especially as optimization targets for hardware designs have
shifted to specialize for the growing market of machine learning applications. We
therefore decline to do so, but nonetheless we provide some relevant hardware
details for reference in Table 1.

On the software side, we used the LLVM Clang compiler, release version
20.1.1, which supports all OpenMP extensions described in Section 2. We used
this OpenMP version in the optimized Kokkos OpenMPTarget backend. On AMD
platforms, we used ROCm™ 6.4.0 on both MI250X and MI300A. On NVIDIA
platforms, CUDA 12.6 was used for A100 and CUDA 12.5 for GH200 GPUs.
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Table 1: GPU models used in this study. The numbers of NVIDIA streaming
multiprocessors (SMs) and AMD compute units (CUs) are provided for compari-
son among GPUs of the same vendor but are not 1:1 equivalent and should not
be used to compare processing capability across vendors.

Processor GPU-CPU
Connectivity

Peak HBM BW
(TB/s)

HBM Size
(GB)

Processing
Elements

GPU
Generation

Peak FP32/FP64
TFLOPs

NVIDIA A100 Discrete 1.6 40 108 SMs Ampere 19.5 / 9.7
NVIDIA GH200 Integrated 4 96 132 SMs Hopper 67 / 34
AMD MI250X Discrete 3.2 128 220 CUs CDNA 2 47.9 / 47.9
AMD MI300A Integrated 5.3 128 228 CUs CDNA 3 122.6 / 61.3

5 Results

In this section, performance results from prior generation discrete GPUs (A100
and MI250X) and more recent converged GPUs (GH200 and MI300A) shed light
on the ongoing benefits of LLVM OpenMP extensions for grid-style kernel mode
execution and dynamic GPU shared memory.

5.1 CGSolve

Fig. 4 shows the performance of the spmv kernel from CGSolve. KK-Native
represents Kokkos using the vendor programming model and compiler, i.e., CUDA
with nvcc on NVIDIA and HIP with hipcc on AMD. KK-Native Clang represents
Kokkos using the vendor programming model (CUDA or HIP) compiled using
Clang. KK-OMPT represents Kokkos using the OpenMPTarget backend without
LLVM extensions. KK-OMPT Kernel represents Kokkos using the OpenMPTarget
backend with LLVM extensions discussed in Section 2.2. OMPT represents direct
OpenMP target code without LLVM extensions. OMPT Kernel represents direct
OpenMP target code with LLVM extensions.

Since SpMV is a memory-bound computation, performance is often reported in
terms of the memory bandwidth achieved. Here it is normalized to the bandwidth
achieved by KK-Native; higher is better. First, there is little difference between
the results of the vendor compilers and Clang using the CUDA and HIP Kokkos
backends (on NVIDIA and AMD, respectively).

Next, consider the performance of the Kokkos OpenMPTarget backend with
and without the LLVM kernel mode extensions. Without the LLVM extensions,
the Kokkos OpenMPTarget backend reaches 52-54% of native performance on
the older A100 GPU but only 29-31% of native performance on GH200. Using
the extensions in the Kokkos OpenMPTarget backend improves performance to
91-95% of native on both devices. For direct OpenMP code without the LLVM
extensions, performance reaches 64-66% of native performance on the older A100
GPU but only 40% of native performance on GH200. On both devices, direct
OpenMP code with the extensions meets or exceeds native performance.

On the AMD devices, performance without the LLVM kernel mode extensions
is uniformly poor, 12-16% of the native backend performance with the Kokkos
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Fig. 4: Normalized bandwidth of SpMV relative to baseline KK-Native (CUD-
A/HIP) for various sizes of sparse matrix data. Higher is better.

OpenMPTarget backend, and 33-41% with direct OpenMP code. Using the LLVM
extensions, the Kokkos OpenMPTarget backend performance reaches 66-84% of
native on MI250X and 77-82% of native on MI300A. The direct OpenMP code
with extensions is within ±4% of native performance, except for the smallest
data size on MI300A.

While the extensions have helped to close the performance gap with the
native backends, there is still some room for improvement on both NVIDIA and
AMD devices at the intersection of OpenMP target offload and Kokkos C++
abstractions.

5.2 TestSNAP

Fig. 5 shows performance results for TestSNAP using the native and OpenMP-
Target Kokkos backends. The execution time is normalized to that of KK-Native;
lower is better, and the y-axis is cut off at 5X baseline performance for readability.
In addition to the native backend and OpenMPTarget backend results (with and
without extensions), the graphs in Fig. 5 also feature a fifth bar in each cluster
of bars. This bar represents the performance using the OpenMPTarget backend
kernel collapse implementation described in Section 3.

As with CGSolve, the results for the Kokkos native backends are mostly close
between Clang and vendor compilers. The exception is the compute_yi kernel
on the NVIDIA devices, which is 26-28% slower using Clang than nvcc. This
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Fig. 5: Normalized execution time of TestSNAP relative to baseline KK-Native
(CUDA/HIP) for several kernels. Lower is better.

discrepancy demonstrates the need to check for performance differences between
compilers regarding GPU code generation.

For the compute_ui and compute_du kernels on NVIDIA, the Kokkos OpenMP-
Target backend without LLVM extensions is 4X-6X slower. With the extensions,
compute_ui and compute_du are only 69-81% and 7-10% slower than native, respec-
tively. With the optimized kernel collapse implementation (Section 3), compute_ui
is only 51-53% slower than native and compute_du is only 1-2% slower than native.
The compute_yi kernel is 52-55% slower than native without the extensions. Using
the extensions brings performance to within 9-12% of native, and using the kernel
collapse gets it to within 3% on GH200 and on par with native on A100.

On AMD MI250X, the OpenMPTarget backend without extensions is more
than 8X slower than native for compute_ui, but with extensions it is only 30%
slower than native and with the kernel collapse it is slightly faster than native.
Even with the extensions, OpenMPTarget backend performance for compute_ui
on MI300A is over 4X slower than native, but it is a large improvement compared
to the 46X slowdown over native without extensions. The kernel collapse reduces
the slowdown to 3X over native, which is still a significant performance gap.

Profiling on MI300A indicates that kernel collapse has slightly lower register
pressure compared to native for the compute_ui kernel, suggesting that the current
team size (128) might not fully saturate the GPU resources. A local experiment
using a larger team size (256) indeed demonstrates improved performance, al-
though the gap compared to native remains. Further analysis of the generated
instructions reveals that the compiler produced more optimized instructions
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for native. Specifically, it utilizes native FP64 atomic-add instructions, while
kernel collapse relies on compare-and-swap instructions. These differences likely
contribute to the observed performance gap. A deeper investigation is required
to identify the root cause more clearly.

Without extensions, compute_du is over 21X slower on MI250X and over 7X
slower on MI300A. With extensions, the slowdown from native is only 28-29%. The
kernel collapse results show roughly the same execution time as native on MI250X
and within 7% of native on MI300A. On the two AMD devices, compute_yi is
53-55% slower than native without the extensions. Using the extensions brings
performance to within 12-17% of native, and using the kernel collapse gets it to
within 9% of native on MI300A and slightly faster than native on MI250X.

The order of magnitude of the improvements reflect the importance of the
dynamic GPU shared memory support provided by LLVM OpenMP, as well as
the kernel mode extensions that map efficiently to GPU compute resources and
reduce overhead costs. Further improvements are provided by the OpenMPTarget
backend kernel collapse implementation described in Section 3, which in several
cases bring performance to parity with the native backends. Obviously, there
is still room for improvement, and the remaining slowdown for compute_ui on
MI300A merits special attention for further optimization.

6 Related Work

Several recent studies have investigated the use of OpenMP offload to program
modern converged CPU + GPU architectures, such as GH200 and MI300A.

Jin [9] optimizes and analyzes the sum reduction operation using OpenMP
offload in a Grace Hopper system with the OpenMP implementation from
the NVIDIA HPC SDK. They demonstrate that, under certain conditions, co-
executing the reduction in the CPU and GPU simultaneously can improve
performance relative to the GPU-only version. Li et al. [10] implement a runtime
tool to automatically offload BLAS operations executed by CPU code to the
Hopper GPU, providing several memory management strategies, which leverage
the high-speed cache-coherent NVLink C2C interconnect in GH200.

Tandon et al. [16] describes the MI300A APU and shows how to accelerate
the code on it using ROCm’s OpenMP. Relying on its unified physical memory,
they obtain significant gains in the OpenFOAM application compared to discrete
GPUs. Bertolli et al. [1] describe the changes in LLVM OpenMP to support
zero-copy between CPU and GPU in OpenMP applications that map data on the
MI300A APUs. Exploring the performance of CGSolve and TestSNAP enabling
zero-copy support is left for future work.

Sfiligoi [12] accelerates PERMANOVA in MI300A using OpenMP offloading
from the AOMP compiler. Although they only show GPU results for MI300A,
this GPU version significantly outperforms OpenMP parallelization on the CPU.
Elwasif [4] evaluates the support for Unified Shared Memory in OpenMP using
different types of memory allocations on various compilers and GPU architectures,
although MI300A and GH200 are not tested.
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Other studies have also compared OpenMP with other high-level programming
models, such as Kokkos, on these newer GPU architectures. Ruzicka et al. [11]
compare the performance portability of OpenMP and Kokkos (with CUDA/HIP
backends) in two plasma physics applications running on a broad variety of
GPUs, including H100 and MI300A. Although both models show decent “out-
of-the-box” performance, Kokkos performs better on new GPU architectures.
Shan et al. [13] optimize the OpenACC and OpenMP implementations of a
3D stencil kernel, where NVIDIA’s OpenACC runs 1.32X and 1.53X faster
than NVIDIA’s OpenMP on A100 and H100, respectively. Even so, it is shown
that both programming models are narrowing the performance gap with native
CUDA in newer architectures like H100. OpenMP optimizations such as the ones
reviewed in this paper aim to help OpenMP versions reduce the gap against the
CUDA/HIP, Kokkos and OpenACC counterparts.

7 Conclusion

The LLVM extensions to the OpenMP API allow the expression of parallelism
and dynamic shared memory usage in a manner similar to native models like
CUDA and HIP. We have shown how these extensions can be used in more
complex parallel patterns and how they perform on the AMD Instinct™ MI300A
Accelerator and NVIDIA GH200 Grace Hopper Superchip. These processors
represent a new generation of CPU-GPU converged architectures, with increased
computational prowess and additional memory bandwidth. Using the OpenMP-
Target backend in the widely used Kokkos C++ performance portability library,
we have demonstrated some application scenarios in which the extensions allow
OpenMP to be competitive with the native programming models, and others in
which they fall short.

In future work, we will more directly incorporate the innovative characteristics
of the newer architectures – specifically, unified memory between host and device.
The ability to avoid memory copies due to architectural design can be explored in
the Kokkos-OpenMPTarget backend by avoiding the Kokkos View copies where
the size of copy is lower than the granularity of hardware synchronization. We
are also collaborating with LLVM OpenMP developers, who aim to optimize
scalar copies on unified memory architectures for static variables within a given
OpenMP scope.

Although more optimization work is needed to further improve performance,
this paper provides evidence that the approaches represent a promising direction
for OpenMP on GPUs. Our findings offer added motivation for their possible
inclusion in future versions of the language specification.
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