
A Virtual GPU as Developer-Friendly OpenMP Offload Target
Atmn Patel

atmn.patel@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Shilei Tian
shilei.tian@stonybrook.edu
Stony Brook University

Stony Brook, New York, United States

Johannes Doerfert
jdoerfert@anl.gov

Argonne National Laboratory
Lemont, Illinois, United States

Barbara Chapman
barbara.chapman@stonybrook.edu

Stony Brook University
Stony Brook, New York, United States

ABSTRACT
While parallel programming is hard, programming accelerators has
always been even more complicated. One fundamental reason is the
lack of mature tooling that can be used to inspect a program that
executes on two different architectures. As GPU software stacks of
different vendors provide vastly different experience for developers,
it is clear that the gold standard for debugging is still host (CPU)
execution with its myriad of mature tooling options.

In this work we present a virtual GPU (VGPU) OpenMP offload-
ing target that allows to emulate a GPU execution environment on
the host. In contrast to classical “host offloading”, the VGPU target
reuses the same execution model, compilation paths, and runtimes
as a physical GPU. While this execution mode is not able to per-
form as good as host-specific compilation, runtimes, and execution,
it provides the developor with a more accurate stand-in for GPU
offloading that is still amendable to existing host tooling.

KEYWORDS
LLVM, OpenMP, accelerator offloading, GPU, debugging

ACM Reference Format:
Atmn Patel, Shilei Tian, Johannes Doerfert, and Barbara Chapman. 2021. A
Virtual GPU as Developer-Friendly OpenMP Offload Target. In LLPP ’21:
The First Workshop on LLVM in Parallel Processing (LLPP), August 9th, 2021,
Chicago (Argonne National Lab), Illinois, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3458744.3473356

1 INTRODUCTION
Given the omnipresence of accelerators in modern compute sys-
tems it is unreasonable to develop high-performance applications
without accelerator support. In addition to classical parallel pro-
gramming, which usually utilizes homogeneous processing units
in a shared memory system, accelerator programming requires the
developer to manage memory and execution across heterogeneous
devices that operate through different program execution models.
While the former is hard by itself, the latter introduces a myriad
of potential errors that complicate programming, and debugging,

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
LLPP ’21, August 9th, 2021, Chicago (Argonne National Lab), Illinois, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8441-4/21/08. . . $15.00
https://doi.org/10.1145/3458744.3473356

even further. On top of the increased complexity comes an often
immature software stack that makes development and debugging
much harder than it would be on the host.

In this work we introduce a new way to develop and debug
OpenMP offloading code that is ultimately intended for a GPU
device through the mature software stack available on the host.
By combining the GPU compilation paths, runtime libraries, and
execution model with execution on the host CPU we provide a
unique development environment: closely resembling the execution
on the GPU but almost as manageable as any other CPU program.

Our virtual GPU (VGPU) offloading target is integrated into the
LLVM/OpenMP implementation and the LLVM/Clang compiler.
While the usage is no different from any other offloading target,
e.g., the host or a physical GPU, the effect is a unique combination of
GPU offloading and host execution. The user compiles the OpenMP
offloading program specifying the virtual GPU as a target as they
would a real GPU. At runtime, the VGPU executes (almost) the same
code as a native GPU execution would, except that it is a host binary
executing on the host (CPU). As such, the user is (conceptually) able
to utilize any existing host (CPU) tooling, like debuggers, profilers,
and sanitizers, regardless of the maturity of the software stack for
the ultimate physical GPU target.

The remaining of the paper is organized as follows. We briefly
introduce LLVM/OpenMP target offloading in Section 2. Then, Sec-
tion 3 and Section 4 show the design and implementation details:
how the virtual GPU device environment is implemented such that
it looks like a real device from the perspective of the device run-
time, and the support from compiler and device runtime. Next, we
evaluate our method in Section 5, and talk about related works in
Section 6. Finally, the paper is concluded in Section 7.

2 BACKGROUND
In this section, we will briefly introduce OpenMP target offloading
support in LLVM. We will first talk about the compilation of an
OpenMP target offloading program, and then discuss the runtime
support.

2.1 OpenMP Target Offloading Compilation
The compilation of an OpenMP program with target offloading
directives contains the following two passes (as shown in Figure 1):

• Host Code Compilation. This pass includes the regular com-
pilation of code for the host and OpenMP offloading code
recognition as preparation for the second pass. Offloading

https://orcid.org/0000-0002-5086-6334
https://orcid.org/0000-0001-6468-6839
https://orcid.org/0000-0001-7870-8963
https://orcid.org/0000-0001-8449-8579
https://doi.org/10.1145/3458744.3473356
https://doi.org/10.1145/3458744.3473356

LLPP ’21, August 9th, 2021, Chicago (Argonne National Lab), Illinois, USA Atmn Patel, Shilei Tian, Johannes Doerfert, and Barbara Chapman

regions are replaced by calls to the corresponding host run-
time library functions (e.g. __tgt_target for the directive
target) with suitable arguments, such as the kernel function
identifier, base pointers of each captured variables and the
number of kernel function arguments. In addition, a fallback
host version of the kernel function will be emitted in case
target offloading fails at runtime.

• Device Code Compilation. This pass utilizes the recognized
OpenMP target offload regions, as well as related functions
and captured variables, and then emits target dependent
device code. This includes one entry kernel function per tar-
get region, global variables (potentially in different address
spaces), and device functions, as well as some target depen-
dent metadata. As part of this compilation the OpenMP de-
vice runtime library, which will be introduced next, is linked
into the user code as an LLVM bitcode library (vgpu.rtl.bc
in the Figure 1).

foo.c

Host
Compiler

Device
Compiler

host.o

device.img

vgpu.rtl.bc

Offload
Bundler

foo.o

Figure 1: Compilation flow of an OpenMP programwith tar-
get offloading.

2.2 OpenMP Target Offloading Runtimes
In order to support OpenMP target offloading, at runtime, the host
code is executed, which dynamically links LLVM’s libomptarget
library, which dynamically loads the available target offloading
plugins, and executes the device code using the device plugin, as
demonstrated in Figure 2.

libomptarget implements OpenMP 5.X user-level runtime library
functions as well as the compiler-level runtime library routines that
Clang emits as part of its code generation. Clang’s code generation
emits device-agnostic calls to compiler-level routines which are
then implemented by libomptarget via the target-specific plugins.

There are a few levels of interfaces that are used in LLVM’s im-
plementation of OpenMP target offloading: the interface between
the compiled fat binary and libomptarget, the interface between
libomptarget and its target device plugins, and the interface be-
tween the binary and the device runtime library. The external in-
terface of libomptarget abstracts the internals by providing the
definitions for the type of data reference in a target region, re-
quires flags, type of allocation, the data structures used to hold
the data and the target region, the data structures used to man-
age asynchronous calls, and the functions used to execute vari-
ous kinds of target regions, as well as the most device-agnostic
of the OpenMP user-level functions such as omp_get_num_devices,
omp_get_initial_device, and omp_target_alloc.

The interface between libomptarget and its device plugins pro-
vide encapsulation of the device-specific implementations of rou-
tines such as memory copies to and from the device (synchronous
and asynchronous), executing target regions on the device, explicit
synchronization for the asynchronous executions, and determining
the number of available devices. libomptarget supports offloading
onto the following device architectures via the plugins in openmp/

libomptarget/plugins/:
• AArch64
• AMDGCN
• CUDA
• PPC64[LE]
• Remote
• VE
• x86_64

Lastly, Clang’s code generation will generate calls to the device
runtime library for device-specific routines. The device runtime
libraries for AMD and Nvidia GPUs are implemented in openmp/

libomptarget/DeviceRTL, providing the device specific implementa-
tions of the interface defined in openmp/libomptarget/DeviceRTL

/Interface.h which contains OpenMP user-level routines such
as omp_get_thread_limit as well as OpenMP runtime-level rou-
tines such as __kmpc_barrier that clang emits as part of its code-
generation of OpenMP constructs.

3 VIRTUAL GPU DEVICE ENVIRONMENT
The VGPU plugin implements a single1 VGPU through a VGPUTy

object that contains a std::thread array. Conceptually, and simi-
lar to a real GPU, the VGPU consists of a number of Cooperative
Thread Arrays (CTAs), each of which contains a number of warps
(aka. wavefronts), each of which contains a number of threads. This
organization ensures that we are able to provide a virtual device
that “natively” supports all operations that a real GPU can support
in a way that does not require (conceptual) changes to the device
runtime that is linked with the application and executed on the de-
vice. The virtual GPU architecture is visualized with accompanying
environment types in Figure 3.

The total number of threads (N) of the VGPU defaults to the
number of processing elements of the host. The number of threads
in a warp, and the number of warps in a CTA are by default cho-
sen to get balanced degrees of parallelism on every level (intra
warp, inter warp/intra CTA, inter CTA). That means, each level
is given ≈ (N)1/3 threads. While we belive this is a sensible de-
fault, each value can be individually configured via the environ-
ment variables VGPU_NUM_THREADS, VGPU_NUM_THREADS_PER_WARP, and
VGPU_NUM_WARPS_PER_CTA.

3.1 Initialization
When the VGPU plugin is loaded at runtime, a global VGPUTy object
is constructed. Upon construction, this object will initialize the
thread array used for execution, the execution queue used to man-
age asynchronous execution, as well as a number of environment
types used to handle these threads at various levels of abstraction:
at the GPU level, CTA level, and warp level.
1There is no conceptual restriction to a single VGPUs, the plugin could similarly expose
a dynamic number of VGPUs that can look alike or be configured differently.

A Virtual GPU as Developer-Friendly OpenMP Offload Target LLPP ’21, August 9th, 2021, Chicago (Argonne National Lab), Illinois, USA

Application Fat Binary libomptarget libomptarget.rtl.vgpu Device Runtime Library
1 2 3 4

Figure 2: 1 Clang is used to compile the OpenMP target offloading application into a fat binary consisting of the host binary as
well as the target binary, as shown in Figure 1. 2 This binary dynamically links in libomptarget and 3 dlopen’s libomptarget.rtl
.vgpu. Within the target image, 4 the device runtime library is used to provide the implementation of device-specific routines
such as atomic increments, memory fences, and thread synchronization.

In order to manage warp-level operations, WarpEnvironmentTy
objects are constructed and stored in a global vector, and likewise
for CTAEnvironmentTy objects. These objects are accessed via point-
ers in the thread-local ThreadEnvironmentTy object that is created
for each thread in the thread-array. This thread-specific object is
accessed by the device runtime library via the exposed accessor
function getThreadEnvironment(). Its role is to emulate common
native GPU functionalities, e.g., the hardware registers that contain
the thread id or warp size. All threads are initially set to wait upon
the WorkAvailable condition variable and are awakened as noted
in the next subsection.

3.2 Scheduling
When libomptarget is calling for the (a)synchronous execution of a
target region, the VGPU plugin will insert the associated code (aka.
kernel) into a queue, analogous to a CUDA stream. More specifi-
cally, libomptargetwill provide the plugin with a __tgt_async_info
object that contains a VGPU execution queue/stream which records
kernels and memory operations that need to be executed in the
order they have been inserted. All operations associated with a
single OpenMP target directive share the same __tgt_async_info

object while different directives (usually) have different objects.
This existing scheme [13] allows for concurrent and interleaved
execution of operations associated with different target directives
on a physical and our virtual GPU. Once the kernel has been added
to a VGPU stream, all threads waiting for work are notified through
the WorkAvailable condition variable. The kernels in the execution
queue are then executed in-order, with the appropriate number of
threads and teams as required by the kernel.

In order to synchronize, the thread calling synchronize is set to
wait on the condition variable WorkDone through the VGPUTymember
function await which is notified when the thread array finishes
execution on a particular VGPUStream. Of course, the call to await

must check if indeed the VGPU stream that it has been waiting on
is empty, otherwise, it resumes waiting.

If the execution of the target region is to be done synchronously,
a __tgt_async_info object is constructed within the plugin, a VPGU
stream is constructed for it, and this stream is awaited upon before
returning from the call to run the target region.

3.3 Execution Environment Information
Each ThreadEnvironmentTy object contains information such as the
ID of the thread within the warp, thread block, as well as within
the global VGPU thread array. In order to access WarpEnvironmentTy
and CTAEnvironmentTy information, the ThreadEnvironmentTy object
contains pointers to them and can access their environment infor-
mation from accessor functions. When executing a kernel, each

target region must know which team is being executed and the
total number of teams. Therefore, a ThreadBlockEnvironmentTy ob-
ject is set up for each thread block before the kernel is executed
and destroyed after the kernel is executed. The WarpEnvironmentTy

object contains the ID of the Warp environment within the global
array of Warps, as well as the number of threads in the Warp.

Each CTA is handled by a CTAEnvironmentTy object. This object
contains the number of threads in the CTA, the number of warps
in the CTA, and the ID of the CTA within the global array of CTA
environments as member fields read by accessor functions getId(),
getNumThreads(), getNumBlocks().

3.4 Synchronization
The synchronization primitives required by the device runtime
library are memory fencing on the team, on the kernel, synchroniz-
ing threads within the warp, as well as providing a named barrier to
synchronize threads within the CTA as well as a generic named bar-
rier. These primitives are called from each individual thread so these
calls are forwarded through the thread-local ThreadEnvironmentTy
to the relevant Warp/CTA environment. In order to support fences
in the kernel, we simply use std::atomic_thread_fence with the
std::memory_order that is requested by the device runtime.

The warp environment contains a single barrier for synchro-
nizing the the threads in the warp, and two additional barriers to
synchronize calls to shuffle and shuffleDown appropriately. The
details of how the shuffle-related barriers are used are explained in
Section 3.5.

The CTA Environment contains three barriers, one for imple-
menting a memory fence through a barrier, one to synchronize all
threads in the CTA, and a last one to provide a named barrier to
the device runtime library.

All barriers are implemented via std::barrier, which is only
available in C++20. Luckily, libc++ [10], part of the LLVM project,
already supports the feature, while libstdc++ [6] support is still
underway. As a result, the VGPU plugin, and the OpenMP program
offloading to VGPU, need to be compiled with libc++ until support
of the required features in libstdc++ matures.

3.5 Shuffle
Parallel reduction is a common building block for many parallel
programs. Earlier implementations used shared memory, which
involves writing data to shared memory, synchronizing, and then
reading the data back from shared memory. Modern GPUs support
efficient parallel reductions exchange data between threads within
the same thread block via shuffle instructions, such as __shfl in
Nvidia and AMD instruction sets [11]. However, shuffle instructions
are not supported by nearly all host architectures, although some

LLPP ’21, August 9th, 2021, Chicago (Argonne National Lab), Illinois, USA Atmn Patel, Shilei Tian, Johannes Doerfert, and Barbara Chapman

Virtual GPU
VGPUTy

CTA
CTAEnvironmentTy

CTA
CTAEnvironmentTy

Warp Warp Warp Warp

Thread Thread Thread Thread Thread Thread Thread ThreadWa
rp

En
vi

ro
nm

en
tT

y
ThreadEnvironmentTy

Figure 3: The architecture of the Virtual GPU with its environment type hierarchy.

do provide instructions with similar names for different purposes,
such as the x86 SSE instruction shufps [16].

The used LLVM/OpenMP device runtime requires twowarp shuf-
fle instructions, __shfl and __shfl_down. Although [16] proposed a
shuffle clause to OpenMP, it is not standardized or implemented,
and could only be used within a parallel and teams region, which
is not sufficient for our use case. In order to support the native
GPU shuffle semantics in the VGPU we implemented them explic-
itly, as shown in Listing 1. In each WarpEnvironmentTy object, there
is a memory buffer with 4 × number of threads bytes. During a
shuffle, the buffer is used as temporary storage that emulates the
registers involved in a native GPU shuffle operation. In addition,
as mentioned in Section 3.4, two barriers are set for synchroniza-
tion. Threads write their data to the right slots in the buffer and
reach the first barrier to ensure all writes have been performed.
Afterwards, threads read from their respective slot the “register
value” of another thread in the warp before a second barrier ensures
all reads have been performed. Both, shuffle and shuffleDown are
member functions of the WarpEnvironmentTy and will be called by
each thread participating in the shuffle. It is worth to note that we
leverage the fact that the OpenMP device runtime ensures only
entire warps will participate in a shuffle operation, this is also the
case for execution on a native GPU.

int32_t shuffle(int32_t V, uint64_t Src) {

uint64_t Id = getThreadIdInWarp ();

WarpEnv ->writeShuffleBuffer(V, Id);

WarpEnv ->waitShuffleBarrier ();

V = WarpEnv ->getShuffleBuffer(Src);

WarpEnv ->waitShuffleBarrier ();

return V;

}

int32_t shuffleDown(int32_t V, uint32_t D) {

uint64_t Id = getThreadIdInWarp ();

WarpEnv ->writeShuffleBuffer(V, Id);

WarpEnv ->waitShuffleDownBarrier ();

V = WarpEnv ->getShuffleBuffer(

(Id + D) % getWarpSize ());

WarpEnv ->waitShuffleDownBarrier ();

return V;

}

Listing 1: Implementation of shuffle and shuffleDown as part
of the WarpEnvironmentTy.

4 COMPILER AND RUNTIME SUPPORT
An OpenMP program with target offloading is typically compiled
via the following command (assume offloading to Nvidia GPU):

clang -fopenmp -fopenmp -targets=nvptx64 ...

where nvptx64 is the target architecture type. If a specific GPU ar-
chitecture is to be targeted, it can be specified by the additional flags
such as -Xopenmp-target -march=sm_75 for targeting the Nvidia Tur-
ing architecture.

4.1 Virtual Target Triple(s)
VGPU is taken as a new set of targets for OpenMP offloading,
depending on the actual underlying host architecture. We could
potentially set -fopenmp-targets=vgpu and let the clang driver to
detect the host architecture. However, it lacks the ability of cross
compilation, which is arguably important for some super comput-
ers, such as Fugaku supercomputer [4], whose login nodes and
compute nodes are different architectures and there is no compiler
in compute nodes. Instead of setting a fake target, we add a new
vendor vgpu. The command argument is -fopenmp-targets={arch
}-vgpu where {arch} is the target architecture type. For example,
program compiled with -fopenmp-targets=x86_64-vgpu can run on
x86_64 platform. In this way, users can still build the program on
one architecture and execute it on another one, like before.

4.2 Code Generation
At the time of this writing, most of code generation for target de-
vices are implemented in the class CGOpenMPRuntimeGPU. Target spe-
cific functions, such as getGPUWarpSize and getGPUNumThreads, are

A Virtual GPU as Developer-Friendly OpenMP Offload Target LLPP ’21, August 9th, 2021, Chicago (Argonne National Lab), Illinois, USA

implemented in CGOpenMPRuntimeAMDGCN and CGOpenMPRuntimeNVPTX

for AMD and Nvidia GPUs respectively, where the two classes
inherit the class CGOpenMPRuntimeGPU. If the target device is not
Nvidia’s or AMD’s, it will fall back to the version in the class
CGOpenMPRuntime.

One of the key differences between VGPU and classical host
offloading is that we reuse code generation as a physical GPU. We
set the code generation to a new class CGOpenMPRuntimeVGPU, which
inherits CGOpenMPRuntimeGPU as well, if the vendor is vgpu. Since
the device runtime already has interface functions to get device
information such as warp size, those target dependent functions
are implemented by simply emitting corresponding function calls.

4.3 Shared Variable Expansion
GPU memory hierarchy contains more levels compared to CPU
memory. Shared memory is one of them, which is a per-thread-
block trunk of memory and can only be accessed by threads within
the thread block. It can usually improve performance if shared
memory is used appropriately. In the used LLVM/OpenMP device
runtime, a number of objects are allocated in shared memory space,
such as team state and smart shared memory manager. However, in
the generated LLVM IR, the address spaces that are not supported
by the target are usually ignored by the back end, leading to data
races at runtime.

In order to tackle the difference, we implemented a code trans-
formation in middle end to correct the accesses of shared variables.
As shown in Listing 2, for each global variable in shared address
space, a new global array of size max number of thread blocks is
created whose element type is same as the shared variable. Each
access of the shared variable will be replaced by an access to the
element of the array indexed by the thread ID in the thread block.
This method is transparent to the device runtime, thus does not
require any change in the device runtime.

for (auto &G : M.globals ()) {

// If the global is not a shared variable ,

// move on.

if (G.getAddressSpace () != SHARED)

continue;

// Create a new global variable which is

// an array of G->getType ().

auto *T = ArrayType ::get(G->getType (),

MaxNumBlocks);

auto *A = M.getOrInsertGlobal(T);

// For each use of G, create a function call

// to get the block id, get the pointer to

// the element indexed by block id, and set

// the use to the element.

for (auto &U : G.uses()) {

auto *Id = CallInst :: Create(BlockIdFn);

auto *V = GetElementPtrInst :: Create(A,

{Zero , Id});

U.set(V);

}

}

Listing 2: Simplified shared variable expansion.

4.4 Device Runtime Support
The LLVM/OpenMP device runtime we used for this work is an
experimental rewrite of the existing one that relies on C++ and
OpenMP, except for some target dependent functions that are im-
plemented with LLVM/Clang intrinsics [12]. Those functions are
for execution environment information query, synchronization,
and misc utilities (such as time, and shuffle). In order to support a
new target VGPU, all target dependent functions need to be imple-
mented accordingly inside of begin/end declare variant regions.
Since there is no actual hardware, and the execution model of a
GPU is different from CPU, no existing intrinsics can meet the
requirement. Note that we could implement VGPU support also in
the current LLVM/OpenMP device runtime but it would require
more involved infrastructure due to the runtime design.

For the VGPU, target specific intrinsics are emulated via the
per-thread ThreadEnvironmentTy object described in Section 3.3.
By calling the accessor function getThreadEnvironment, the thread
can get a pointer to its own ThreadEnvironmentTy object. Thus,
all target dependent functions are implemented by calling corre-
sponding member functions of the ThreadEnvironmentTy object. For
example, getThreadEnvironment()->getThreadIdInBlock() returns
the thread ID in a thread block, equivalent to threadId.x in CUDA
or the LLVM-IR llvm.nvvm.read.ptx.sreg.tid.x intrinsic available
when targeting NVPTX.

In order to conditionally declare the functions relevant to the
VGPU runtime, an OpenMP declare variant clause [2] is used as
shown in Listing 3.

#pragma omp begin declare variant. \

match(device ={kind(cpu)})

uint32_t getThreadIdInBlock () {

return getThreadEnvironment ()->

getThreadIdInBlock ();

}

#pragma omp end declare variant

Listing 3: Using OpenMP’s declare variant to conditionally
declare device runtime functions akin to the vendor-specific
GPU device runtime functions.

5 EVALUATION
In order to test the VGPU design, we compared the execution time
of OpenMP target offloading applications when ran with the classi-
cal x86_64 host offloading and on the the virtual GPU. While the
benefit of the VGPU offloading is in development and debugging, it
is crucial for user experience that the performance is comparable to
native host execution. For the benchmarks, our VGPU was initial-
ized with the following configurations (threads per warp/warps per
CTA): 16/1, 8/2, 4/4, 2/8, and 1/16, since the benchmark machine
had a maximum hardware concurrency limit of 16 threads. For our
benchmarks, we used a machine with AMD Ryzen 7 3800X and 32
GB of DDR4 RAM, running a Linux distribution. We used our fork
of the trunk Clang/LLVM that contains the new device runtime
library, the required clang changes, as well as the new libomptarget

plugin required to provide the virtual GPU.

LLPP ’21, August 9th, 2021, Chicago (Argonne National Lab), Illinois, USA Atmn Patel, Shilei Tian, Johannes Doerfert, and Barbara Chapman

Benchmark x86_64 Absolute Time (s) 16/1 8/2 4/4 2/8 1/16
bfs-graph65536.txt 0.0106 1.44 1.46 1.50 1.40 1.48
bfs-graph1MW_6.txt 0.05145 1.87 1.99 1.98 1.93 1.90

nw 0.3847 1.12 1.13 1.14 1.12 1.12
hotspot-64 0.2885 1.60 1.53 1.47 1.57 1.47
hotspot-512 0.2832 1.53 1.50 1.54 1.52 1.43
hotspot-1024 0.2890 1.53 1.45 1.53 1.55 1.68
RSBench-small 4.522 1.93 - - - -
RSBench-large 19.190 1.73 - - - -
XSBench-small 1.995 1.16 - - - -
XSBench-large 9.090 1.10 - - - -

Table 1: The absolute running time of x86_64 host offloading for each benchmark run and the slow-down factor of running
the benchmark on each of the aforementioned VGPU configurations in (threads per warp/warps per CTA) form.

5.1 Benchmarks
The Rodinia Benchmark Suite [3] is a benchmark suite developed
for heterogeneous programming models such as OpenMP, OpenCL,
and CUDA. Within this suite, there are number of OpenMP bench-
mark programs, and a small subset of them contain OpenMP target
offloading: bfs, hotspot, cfd, nw, and lud. Of these, we ran bfs - a
simple breadth first search application on two of the benchmark
input graphs of different sizes: graph65536.txt, and graph1MW_6.txt.
The third provided input for bfs in the Rodinia suite contained a
graph too small for us to accurately compare the running time
between the virtual GPU and the classical x86 host offloading, so
it has been excluded from benchmarking. For nw - a nonlinear
global optimization program for DNA sequence alignments, we
conducted a run occurred with the arguments 100000/100000 3 16.
Other argument sets for nw runs were either infeasible within the
benchmark environment or would result in inaccurate comparisons.
For hotspot - a program used to estimate processor temperature, we
ran the following arguments as inputs: 10 10 1000000 16 with the
temperature and power files being appropriately paired i.e. temp_64
with power_64. We also ran the RSBench [14] and XSBench [15]
mini-apps that contain a key kernel of the Monte Carlo neutron
transport algorithm. Each benchmark was run a hundred times
and only benchmarks with an appropriately small variance are
discussed.

5.2 Results
From Table 1, we see that the VGPU induces up to a 2× slowdown
on the subset of Rodinia benchmarks with statistically meaning-
ful running times. This initial implementation of a virtual GPU
indicates that there is an acceptable class of OpenMP target of-
floading programs that can be tested and debugged with the virtual
GPU target device rather than using classical host offloading which
does not use Clang’s GPU code generation nor the device runtime.
While we expect the slowdown to be reduced as we improve the
implementation, the VGPU already provides developers a practical
alternative to develop and debug code intended for physical GPU
targets such as AMD, NVIDIA, or Intel GPUs.

5.3 Debugging Support
We were also able to run OpenMP target offloaded to VGPU pro-
grams through debuggers such as gdb [5] and lldb [7]. In addition to
being able to set breakpoints within the target regions to debug, we
were also able to access stack traces in case of segmentation faults
within a target region, as an example, see Listing 4. This ensures
that the primary requirement of the virtual GPU plugin providing
access to host-only debugging tools while utilizing the OpenMP
(GPU) target offloading toolchain is satisfied.

* thread #2, name = 'XSBench ', stop reason =

signal SIGSEGV: invalid address (fault address

: 0x0)

* frame #0: 0x... tmpfile_gmU3b1 `

fast_forward_LCG(seed =1070, n=0) at

Simulation.c:371:20

frame #1: 0x... tmpfile_gmU3b1 `

__omp_outlined___debug__ .1(...) at

Simulation.c:59:10

...

Listing 4: Partial stacktrace from XSBench that offloads
onto the VGPU target

6 RELATEDWORKS
OpenMP 4.0 providesmechanisms to offload regions of code to accel-
erators. Antao et al. [1] introduces an OpenMP offloading implemen-
tation to LLVM targeting Nvidia GPUs. Later the implementation
was extended to support AMD GPUs. In addition, LLVM infras-
tructure also supports host offloading to x86_64, AArch64, PPC64[LE]
[8]. Like we discussed before, the support is totally different from
our design, and the programs run like a regular OpenMP program.
Recently the device runtime was rewritten with OpenMP, making
it possible to compile the device runtime and run on host [12]. For
other programming models providing offloading support, similar
solutions have been explored, such as [9] for OpenCL. To the best
of our knowledge, our work is the first to emulate GPU execution
for OpenMP offloading programs.

A Virtual GPU as Developer-Friendly OpenMP Offload Target LLPP ’21, August 9th, 2021, Chicago (Argonne National Lab), Illinois, USA

7 CONCLUSION AND FUTUREWORK
In this work, we propose a novel way to develop and debug OpenMP
offloading program via a virtual GPU (VGPU) that emulates GPU ex-
ecution on the host. To make sure that VGPU can provide a same de-
velopment environment as a native GPU, we implemented a virtual
GPU device environment that can provide same execution model
and functionalities, combined with the GPU compilation paths
and runtime libraries. The evaluation results show that OpenMP
target offloading programs can be tested and debugged on host
with our proposed VGPU with reasonable slowdowns compared to
host-tuned execution.

We intend to improve the performance of our VGPU implemen-
tation and to add more features, such as custom scheduling policies,
separate process space (to support data movement debugging), as
well as sanitizer support.

ACKNOWLEDGMENTS
This work was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of two U.S. Department of Energy
organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a
capable exascale ecosystem, including software, applications, hard-
ware, advanced system engineering, and early testbed platforms,
in support of the nation’s exascale computing imperative.

REFERENCES
[1] Samuel F. Antao, Alexey Bataev, Arpith C. Jacob, Gheorghe-Teodor Bercea,

Alexandre E. Eichenberger, Georgios Rokos, Matt Martineau, Tian Jin, Guray
Ozen, Zehra Sura, Tong Chen, Hyojin Sung, Carlo Bertolli, and Kevin O’Brien.
2016. Offloading Support for OpenMP in Clang and LLVM. In The Workshop on
the LLVM Compiler Infrastructure in HPC (LLVM-HPC). Salt Lake City, UT, USA,
1–11.

[2] OpenMP Architecture Review Board. 2020. OpenMP Application Programming
Interface Version 5.1. https://www.openmp.org/spec-html/5.1/openmp.html

[3] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE international symposium on workload characterization
(IISWC). Ieee, 44–54.

[4] Fujitsu. 2021. Supercomputer Fugaki. https://www.fujitsu.com/global/about/
innovation/fugaku/

[5] GNU. 2021. GDB: The GNU Project Debugger. https://www.gnu.org/software/
gdb/

[6] GNU. 2021. libstdc++ - GCC. https://gcc.gnu.org/onlinedocs/libstdc++/manual/
status.html#status.iso.2020

[7] GNU. 2021. The LLDB Debugger. https://lldb.llvm.org/
[8] LLVM Developer Group. 2021. OpenMP Support — Clang 13 documentation.

https://clang.llvm.org/docs/OpenMPSupport.html
[9] Pekka Jääskeläinen, Carlos Sánchez de La Lama, Erik Schnetter, Kalle Raiskila,

Jarmo Takala, and Heikki Berg. 2015. pocl: A performance-portable OpenCL
implementation. International Journal of Parallel Programming 43, 5 (2015), 752–
785.

[10] LLVM. 2021. “libc++” C++ Standard Library. https://libcxx.llvm.org/
[11] Justin Luitjens. 2014. Faster Parallel Reductions on Kepler. https://developer.

nvidia.com/blog/faster-parallel-reductions-kepler/
[12] Shilei Tian, Jon Chesterfield, Johannes Doerfert, and Barbara Chapman. 2021.

Experience Report: Writing A Portable GPU Runtime with OpenMP 5.1. In Inter-
national Workshop on OpenMP. Bristol, UK.

[13] Shilei Tian, Johannes Doerfert, and Barbara Chapman. 2020. Concurrent Exe-
cution of Deferred OpenMP Target Tasks with Hidden Helper Threads. In The
Workshop on Languages and Compilers for Parallel Computing (LCPC). Stony
Brook, NY, USA.

[14] John R. Tramm, Andrew R. Siegel, Benoit Forget, and Colin Josey. 2014. Per-
formance Analysis of a Reduced Data Movement Algorithm for Neutron Cross
Section Data in Monte Carlo Simulations. In EASC 2014 - Solving Software Chal-
lenges for Exascale. Stockholm. https://doi.org/10.1007/978-3-319-15976-8_3

[15] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014. XS-
Bench - The Development and Verification of a Performance Abstraction for

Monte Carlo Reactor Analysis. In PHYSOR 2014 - The Role of Reactor Physics toward
a Sustainable Future. Kyoto. https://www.mcs.anl.gov/papers/P5064-0114.pdf

[16] Anjia Wang, Xinyao Yi, and Yonghong Yan. 2020. Supporting Data Shuffle
Between Threads in OpenMP. In OpenMP: Portable Multi-Level Parallelism on
Modern Systems, Kent Milfeld, Bronis R. de Supinski, Lars Koesterke, and Jannis
Klinkenberg (Eds.). Springer International Publishing, Cham, 98–112.

https://www.openmp.org/spec-html/5.1/openmp.html
https://www.fujitsu.com/global/about/innovation/fugaku/
https://www.fujitsu.com/global/about/innovation/fugaku/
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.2020
https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.2020
https://lldb.llvm.org/
https://clang.llvm.org/docs/OpenMPSupport.html
https://libcxx.llvm.org/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://doi.org/10.1007/978-3-319-15976-8_3
https://www.mcs.anl.gov/papers/P5064-0114.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 OpenMP Target Offloading Compilation
	2.2 OpenMP Target Offloading Runtimes

	3 Virtual GPU Device Environment
	3.1 Initialization
	3.2 Scheduling
	3.3 Execution Environment Information
	3.4 Synchronization
	3.5 Shuffle

	4 Compiler and Runtime Support
	4.1 Virtual Target Triple(s)
	4.2 Code Generation
	4.3 Shared Variable Expansion
	4.4 Device Runtime Support

	5 Evaluation
	5.1 Benchmarks
	5.2 Results
	5.3 Debugging Support

	6 Related Works
	7 Conclusion and Future Work
	Acknowledgments
	References

