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Abstract—Currently, offloading to accelerators requires users
to identify which regions are to be executed on the device, what
memory needs to be transferred, and how synchronization is to
be resolved. On top of these manual tasks, many standard (C/C++
library) functions, such as file I/O or memory manipulation,
cannot be directly executed on the device and need to be worked
around by the user explicitly. This makes it challenging to port
programs in the first place and hinders developers from testing
features on the GPU and within the GPU compilation pipeline.
Existing tests and test suites for the host are effectively unusable
for accelerators and need to be manually ported to provide the
same benefits for the devices as they do on the host.

In this paper, we propose a direct GPU compilation scheme
that leverages the portable target offloading interface provided by
LLVM/OpenMP. Utilizing this infrastructure allows us to compile
an existing host application for the GPU and execute it there with
only a minimal wrapper layer for the user code, command line ar-
guments, and a compiler provided GPU implementation of C/C++
standard library functions. The C/C++ library functions are
partially implemented for direct device execution and otherwise
fallback to remote procedure call (RPC) to call host functions
transparently. Our proposed prototype will allow users to quickly
compile for, and test on, the GPU without explicitly handling
kernel launches, data mapping, or host-device synchronization.
We evaluate our implementation using three proxy applications
with host OpenMP parallelism and three microbenchmarks to
test the correctness of our prototype GPU compilation.

Index Terms—GPU, OpenMP, compilation, portability

I. INTRODUCTION

Compiling and executing user code on the GPU has long
been supported by kernel languages like CUDA, OpenCL,
or HIP. However, these kernel languages require the user to
explicitly outline which regions are to be compiled for and
executed on the device. This does not only slow down the
(compiler) developers’ ability to test offloading but also users
that want to determine what features, e.g., atomic operations,
are properly supported by a compiler toolchain and the GPU
hardware. Any test case needs to be written with explicit
offload directives and data mapping in mind. As a result,

existing host code, including test suites for compilers and
(portable) parallel programming languages, e.g., OpenMP, are
effectively unusable in the GPU world.

In this paper, we decided to take a step back to avoid the
need for dedicated programming of host and device by the
user. Instead of this multi-device view, our compiler toolchain
will put the GPU (or any other supported accelerator) at
the center of execution. Existing single-device programs are
directly compiled for, and executed on, the GPU without user
interaction or a specialized compiler. A modern LLVM/Clang
and a few command line flags that pull in wrappers are
all it needs for an OpenMP parallel host application to be
executed “completely” on the GPU, including parallelism.
This approach removes the need for a costly port to test
features on the GPU or the GPU compilation pipeline itself.
Any existing host program can simply be run on the GPU,
assuming all dependencies are met. Users can easily determine
what functionality is available, e.g., what OpenMP constructs
work and what atomic operations are supported, by simply
reusing the existing host test suites for those. Further, compiler
developers can finally utilize the enormous amount of host
code to identify problems in the GPU compilation toolchain
and later boost confidence in the currently “comparatively
sparsely tested” backends.

Summarized, we propose to use LLVM/OpenMP offloading
to compile the entire host and potentially parallel application
for the GPU device and execute it there. To achieve this,
we implemented a user wrapper that calls the user’s main

function from a GPU kernel and further ensures all user
code is compiled for the GPU. We also provide a new, but
partial, standard C library (libc) for the device which is
naturally present on the host. We reuse the math library
(libm) for the device introduced by [1]. For system routines
requiring information from the host, we implemented a remote
procedure call (RPC) framework to periodically communicate
with a running host thread during the execution of the user
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Fig. 1. An overview of our direct-GPU compilation pipeline. User code and compiler are unchanged (dotted rectangle). The parts with blue background
(entire first and third row) are provided by this work. The source files for the “main wrapper” and the standard library libc are compiled as GPU-only
code (via -fopenmp-offload-mandatory in addition to OpenMP device offlad flags). The “user wrapper” header file is pre-included into every
user source file via -include. The final executable running on the GPU will communicate with the host RPC thread in case library functions cannot be
reimplemented on the device and need host support.

program on the device. Fig. 1 shows an overview of our
proposed framework. The blue parts (entire top row and
bottom row) are added to allow direct GPU compilation. They
are coupled with the user program through minimal changes
in the users’ compilation instructions, e.g., Makefile, which
adds the necessary compilation flags. The host RPC thread is
executing the host part of the standard library (libc) provided
for the GPU as not all functionality can be executed natively
on the device, e.g., system calls need host support. Note that
our approach does neither require user code modifications
nor changes to the functionality already present in a modern
LLVM/Clang compiler (e.g., LLVM 15 and later).

This paper makes the following contributions:

• A novel compilation path that can compile an OpenMP
parallel host program to make it “completely” run on a
GPU without any change in the source code.

• A remote procedure call (RPC) implementation to trans-
parently utilize the host from the device in case system
calls or other unavailable features are needed during
kernel execution.

• A LLVM/OpenMP-based prototype implementation that
currently supports Nvidia GPUs but is not conceptually
bound to a specific device. All parts but the RPC imple-
mentation are already portable.

• Thorough evaluations of our implementation using
OpenMP proxy applications and micro-benchmarks that
cover the most common patterns in HPC applications.

The rest of the paper is organized as follows. We first
introduce some background of OpenMP target offloading in
Section II. Next, we talk about our prototype implementation
on top of LLVM/OpenMP in Section III, followed by the
discussion of the evaluation results in Section IV. Related
work is compared in Section V before we conclude the paper
in Section VI and discuss future work, especially potential
solutions to identified limitations.

II. BACKGROUND

OpenMP 4.0 introduced the target construct, indicating
that the enclosed region can be executed on a target device,
such as a GPU or FPGA. This section briefly introduces the
compilation flow, code representation, and execution model
used by LLVM/OpenMP.

A. Compilation and Device Code Representation

LLVM/OpenMP offloading features a two-pass compilation
by first performing host code compilation and then device
code compilation. Host code compilation includes the regular
compilation of code for the host and then generates calls
to the LLVM/OpenMP offloading runtime in order to invoke
kernels defined in the next stage. Device code compilation
emits target-dependent device code for offloaded regions, as
well as required functions and variables.

In addition to the target construct (as well as its combined
variants), OpenMP provides the declare target directive
which specifies that all associated variables and functions are
to be mapped onto the target devices and thus are usable in de-
vice code [2]. All code associated with a target construct, the
so-called target region, will be outlined, and a kernel will be
generated for it such that it can be invoked from the host. Fig. 2
and 3 show an example of CUDA code and its correspond-
ing OpenMP offload version. The device_type(nohost)

clause on a declare target construct forces the compiler
to not generate host versions of the enclosed variables and
functions. Similarly, LLVM/Clang offers the command line
option -fopenmp-offload-mandatory as an extension to
prevent the compiler from generating host fallback code for
target regions1. Together, this allows us to emit code only for
the GPU without them being compiled for the host.

1Based on the OpenMP specification, a host version of a target region
has to be generated and will be executed if offloading fails at runtime. The
command line option effectively guarantees the compiler that an offload failure
will end the program; therefore, a host fallback version is not required.



__device__ int g;
__device__ void foo();

__global__ void baz() { foo(); }

void bar() {
baz<<<...>>>();

}

Fig. 2. An example of CUDA code. The function baz is a kernel that is the
entry point of a GPU program and can be launched from host. The function
foo is a device function that can be called in a kernel.

#pragma omp begin declare target device_type(nohost)
int g;
void foo();
#pragma omp end declare target

void bar() {
// The following region will be outlined to a new
// function, and will be launched from the host,
// similar to the function `baz` in the CUDA example.
#pragma omp target
{ foo(); }

}

Fig. 3. Equivalent OpenMP code to Fig. 2.

B. Execution Model

An OpenMP program begins as a single, or initial
thread, executing sequentially. When any thread encounters
a parallel construct, the thread creates a new team of itself
with zero or more additional threads, each of which executes
the code associated with the parallel construct.

int main(int argc, char **argv) {
/* region 1 */

#pragma omp parallel
{ /* region 2 */ }
/* region 3 */

}

Fig. 4. An example of a host OpenMP program.

Fig. 4 shows an example of a program with a parallel

construct. Region 1 is executed by the initial thread. When the
parallel construct is encountered, the initial thread forks a
team of threads, each of which executes region 2. After region
2 is executed by all threads in the team, only the initial thread
continues the sequential execution of region 3.

Similar to the host model described above, when a target

region executes, it is executed by the initial thread sequentially.
However, a teams construct is usually used to create a league
of teams together with the target region such that each team
starts execution with one initial thread independently. When a
parallel construct is encountered, the enclosed region will,
as above, be executed by the encountering thread and the (new)
threads that are part of the respective team.

#pragma omp target teams num_teams(N)
{

/* region 1 */
#pragma omp parallel

{ /* region 2 */ }
/* region 3 */

}

Fig. 5. OpenMP target offloading program excerpt.

For the example in Fig. 5, when the target region starts
execution, N teams will be created. Only one thread, the initial
thread, in each team executes region 1 independently. When
those threads come to the parallel construct, all threads in
each team will execute region 2. After the execution of region
2, only the N initial threads will execute region 3.

III. DESIGN AND IMPLEMENTATION

We envisioned a toolchain that allows seamless execution
of host codes on device accelerators without any code modifi-
cations. Thus, our approach is by design minimally invasive.

Traditionally, for any code to run on any architecture the
code needs to be represented in the target architecture’s
instruction set. Moreover, the executable in a conventional
architecture is loaded for execution by the operating system, At
execution time the operating system provides support through
system calls, e.g., to access the file system. These system calls
are abstracted by the standard C library. For example, there
is functionality to write and read files, send packets through
the network, and allocate memory.

Intuitively, our approach needs to provide the same high-
level functionality, summarized as: 1) The application source
code needs to be translated into the underlying GPU instruc-
tion set architecture. 2) The application executable needs to be
loaded to the device and execution must start there together
with the command line options passed by the user being
available. 3) The standard C library (libc) needs to be
available on the device to provide common functions.

A. Source code translation to device instruction set

In order to make the program execute completely on the
GPU, we need to ensure that all user code is compiled for
the device, not the host. As mentioned in Section II-A, the
declare target directive allows us to mark which code
and global symbols should be present on the target device.
To ensure all user code is associated with such a directive we
effectively prepend a begin declare target before any
user source file. Instead of requiring the user to add these
annotations manually, we provide a wrapper header (presented
in Fig. 6) and automatically include the wrapper header using
Clang’s -include command line option when compiling user
code. Specifically, the user is required to extend the build sys-
tem and pass the following flag -include UserWrapper.h

as part of the compilation command, e.g., at the beginning
of the CFLAGS. To ensure we avoid declaration conflicts with
the host we use the device_type(nohost) clause to only
emit the user code for the target device. The secondary use of
the wrapper header is to rename the original main function
of the program into __user_main. This allows us to provide
our own main function while making sure we can call the
user-provided one from our target region.

#pragma omp begin declare target device_type(nohost)

int main(int, char *[]) asm("__user_main");

Fig. 6. User wrapper header (UserWrapper.h in the text).



B. Loading and invoking the device execution

Typically, the startup of a process requires, among other
steps, loading the application executable to host memory and
initializing the statics object to be constructed and loaded into
host memory. Finally, once the setup is done, execution control
is given to the main function. Thus, the main function is the
starting point of a traditional host program.

Similarly, in the typical device execution scheme, the host
code launches explicitly a kernel and that kernel is one of the
entry points of the GPU execution. Fig. 2 illustrates the syntax
of launching a device kernel.

Respectively, in direct GPU compilation, we need to ini-
tialize all static objects in the device and then start exe-
cution by invoking the original main on the device. The
LLVM/OpenMP implementation already allocates and initial-
izes static device objects upon device initialization. Since the
entire user code is considered device code, OpenMP will
initialize all the required variables automatically. However, we
still need to invoke the original main function on the device.
To simplify this, we already renamed the user main function
to __user_main using the assembly shown in Fig. 6.

To transfer control to the user main function we provide the
host main function illustrated in Fig. 7. At first, all program
arguments are mapped to the device such that the user’s
main function can access them. Then it launches the user’s
main function __user_main by calling it from a target

region. The return value of the host program is taken from
the __user_main function. This new host entry point is
implemented in Main.c and this file needs to be compiled
by the user and linked into the executable together with all
other user source files.

#include <string.h>

extern int __user_main(int, char *[]);

int main(int argc, char *argv[]) {
#pragma omp target enter data map(to: argv[:argc])

for (int I = 0; I < argc; ++I) {
size_t Len = strlen(argv[I]);
#pragma omp target enter data map(to: argv[I][:Len])

}

int Ret;
#pragma omp target teams num_teams(1) \

thread_limit(1024) map(from: Ret)
{ Ret = __user_main(argc, argv); }

return Ret;
}

Fig. 7. The file contains actual main function (Main.c in the text).

C. Standard C library support

Typically, applications interact with memory allocators,
files, and other system parts through the omnipresent Stan-
dard C Library (libc). For our benchmarks, libc provides:
1) memory-related functionality, e.g., malloc and free;
2) utilities, including stcmp, atof, atoi, and memcpy; 3) I/O
access via fread, printf, and similar functions. However,
our application will not have direct access to the host runtime

as it will be executed on the device. Therefore we provide
a separate implementation of a subset of the standard C
library as part of this work. Our implementation handles the
aforementioned categories differently.

1) Memory allocation and deallocation: Dynamic memory
allocation is widely used in a host program through malloc

or the new operator in C++. Their support for GPUs varies
widely between vendors. Nvidia, for example, has built-in
malloc and free functions that can be called from the
device. However, it is generally not recommended because
of the poor performance as well as the limited heap size.
AMD supports dynamic allocation in HIP, but currently not
when using LLVM/OpenMP. In order to work around the
variance and limitation among vendors’ support, we instead
implemented dynamic heap memory allocation using a pre-
allocated memory pool and a simple bump allocator for the
purpose of this prototype.

2) Utility functions: These functions are implemented in a
device library that is linked with the application executable.
Thus, the application can directly execute the library code
inside the device, and through the link-time-optimizations
(LTO) [3] overheads can be minimized.

3) I/O routines: The device is unable to access hardware
that is memory mapped to the operating system, for example,
hard drives and networks. In order to transparently support
functions that rely on such access, we implement a host remote
procedure call (RPC) scheme which coordinates the commu-
nication between the host and GPU whenever necessary. It
features a synchronous, stateless client-server protocol, where
the GPU (client) sends requests to the host (server) and waits
for the host to acknowledge the completion. Fig. 8 illustrates
how RPC communication between the host and GPU works.

All functions that require the delegation to host share the
same basic pattern. We will use fopen as an example to
discuss the communication between the device (as shown in
Fig. 9) and host (as shown in Fig. 10) in more detail.

In the device implementation, a wrapper object that manages
the lifetime of allocated resources encapsulates the main data
structure, a HostRPCDescriptor. This descriptor stores all
the necessary information that will be shared with the RPC
server, such as the function call ID, number of arguments,
and the value and type of each argument.

Arguments are added to the descriptor by calling
Wrapper.addArg(...). If an argument is a scalar or a
pointer whose pointed memory buffer does not need to be
accessed from the host, it will be copied into the descrip-
tor directly. Otherwise, such as the two pointer arguments
filename and mode in this case, two extra steps are required:
1) allocate new storage for the pointed-to memory (recursively
if necessary), and 2) copy the memory over into the newly
allocated one. This copy is in general necessary because we
do not know if the original memory pointed by a pointer is
accessible from the host2. For now, we need to conservatively

2For instance, on Nvidia GPUs, the memory buffer allocated from malloc
on the device can not be copied to host. Similarly, stack memory of a thread
is not host accessible.
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FILE *fopen(const char *filename, const char *mode) {
HostRPCDescriptorWrapper Wrapper(ID_fopen, 2);
if (!Wrapper.isValid())
return nullptr;

auto Len1 = strlen(filename) + 1;
auto Len2 = strlen(mode) + 1;

HostRPCObject<const char *> FileName(Len1);
HostRPCObject<const char *> Mode(Len2);

FileName.copyFrom((void *)filename, Len1);
Mode.copyFrom((void *)mode, Len2);

Wrapper.addArg(FileName.get(), ARG_POINTER, Len1);
Wrapper.addArg(Mode.get(), ARG_POINTER, Len2);

if (!Wrapper.sendAndWait())
return nullptr;

return Wrapper.getReturnValue<FILE *>();
}

Fig. 9. Implementation of fopen on the device.

assume all memory is non-accessible and perform the copy.
Future work should utilize compiler analyses to alleviate this
copy in the common case of heap-allocated memory. Similarly,
a runtime check could be employed in the future.

After everything is set up, the RPC request is issued by the
device thread which then waits for the result from the host.
All this is encapsulated in the Wrapper.sendAndWait()

method, which essentially works as follows. It first notifies the
host that there is a new RPC request, and then actively checks
the status of the request. If the request has not been fulfilled
yet, it sleeps for a few nanoseconds using the exponential
back-off algorithm and then checks again.

For now, our prototype only supports one request at a time.
We expect future work to extend this and to support multiple
requests, e.g., by using a queue.

bool handle_fopen(HostRPCDescriptor &SD) {
ArgumentExtractor AE(SD);

auto *FileName = AE.getArg<const char *>(0);
auto *Mode = AE.getArg<const char *>(1);

FILE *F = fopen(FileName, Mode);
if (F == nullptr)

return false;

SD.ReturnValue = (void *)F;
return true;

}

Fig. 10. Implementation of fopen on the host.

On the host side, once a new request is received, it
is dispatched to the corresponding handler (in this case
handle_fopen). The ArgumentExtractor encapsulates the
logic to prepare arguments for the host runtime call. This
includes moving memory buffers from the device to the
host if unified shared memory is not supported. Finally, the
corresponding host runtime function is called. Values and
memory that need to be transferred to the device are now
moved and the return value of the host call is saved. Note that
the FILE * in this example is not mapped to the device but is
taken as a literal value to be exclusively used on the host. The
RPC server will update the status of the request on the device
side and wait for the next request. As soon as the status was
updated the RPC client on the device will continue execution.

D. Limitations

Arbitrary Library Functions: Our prototype implemen-
tation does not support function calls to an arbitrary library
because delegation support needs to be customized. As with
missing libc functionality, arbitrary library functions can be
added as needed.

Variadic Functions: Variadic functions, such as printf

and fscanf, are widely used in real-world applications.
However, we do not support the ability to extract the variadic
arguments through va_start, va_arg, etc., on the GPU. For
now, LLVM/OpenMP does support printf for Nvidia GPUs
using a workaround. The compiler first packs up all variadic
arguments into a struct, replaces the function call to printf

with __llvm_omp_printf, and passes the pointer to the
struct as an argument. __llvm_omp_printf is implemented
in the device runtime library [4]. It calls vprintf, which is
an external function provided by the Nvidia device library. For
AMD GPUs, this method does not work as it does not have
its counterpart of vprintf. Furthermore, we can not simply
apply the same method to other variadic functions either, even
though we have RPC, because the host version of vprintf

does not accept a pointer to a buffer of all packed arguments,
as what Nvidia provides for vprintf. Once (partial) variadic
argument support for GPUs is implemented in LLVM/Clang
we can support these functions as we do any others already.

Single Team Execution: Based on the execution model of
OpenMP target offloading, as introduced in Section II-B, the
body of a target teams construct will be executed by the
initial thread of each team. If there are N teams, the body will



be executed by all the N initial threads. However, most part
of the user code (except those OpenMP parallel regions)
should only run single-threaded. As a result, we can only use
one team, as the num_teams(1) shown in Fig. 7. In LLVM
OpenMP, an OpenMP team is mapped into a thread block (or
wavefront for AMD GPU). There is usually a limited number
of threads that can be used in one thread block, such as 1024
for Nvidia GPUs. Therefore, we can only use at most that
total number of threads, even for the parallel region, which
limits the usage of GPUs. Mapping a parallel region onto
multiple teams is not in general legal but could be done with
compiler support. We also expect ensemble use cases that run
the application many times on different inputs, e.g., random
seeds, to be able to utilize the entire device rather than a single
team/thread block/wavefront at a time.

Variable-Length Array: Variable-length array (VLA) is
currently not supported on GPUs. As a consequence, a com-
piler (front end) error will be emitted if a VLA is used. Future
work could enable support if the use case is important enough.
However, VLAs on the GPU would potentially need to utilize
dynamic memory rather than static memory.

E. Putting Everything Together

Our approach is transparent to the developer, as they do not
need to modify the initial application code. In essence, the
user is required to only modify the build configuration, e.g.,
the description passed to make or cmake. Figures 11 and 12
show the usage of LLVM/OpenMP with our proposed method.
The required steps are: 1) Enable standard OpenMP offloading
using -fopenmp --offload-arch=<arch>. 2) Include the
wrapper header using -include UserWrapper.h to map all
code to the device. 3) Compile and link Main.c which invokes
the original main on the device.

$ clang -c <user source files> \
-fopenmp --offload-arch=<arch> \
-include <path to>/UserWrapper.h

Fig. 11. Compile the user code with LLVM/OpenMP offload flags and include
the user wrapper header file.

$ clang <path to>/Main.c -c -o __Main.o \
-fopenmp --offload-arch=<arch> \
-fopenmp-offload-mandatory

$ clang -fopenmp --offload-arch=<arch> \
__Main.o <other object files> \
-o <exec name>

Fig. 12. Compile the provided host main function that offloads the user code
application to the device and link it together with the other object files to
generate the executable.

IV. EVALUATION

A. System Configuration

For our performance evaluation, we used an Nvidia A100
GPU system with an AMD EPYC 7532 CPU (32C/64T) and
256 GB DDR4 RAM. We used CUDA 11.4.0 for all experi-
ments. Our prototype version (⋔) is based on � 0a8dd8ef.

B. Benchmarks

We used three proxy applications and three microbench-
marks from HeCBench for the evaluation. Each benchmark has
two versions: host OpenMP and OpenMP target offloading.

XSBench and RSBench are two proxy applications for
the Open Monte Carlo (OpenMC) project. Both proxies com-
pute the continuous energy macroscopic neutron cross-section
lookup when studying neutron transport, and both are available
in multiple programming languages and frameworks. While
XSBench [5] extracts one of the main kernels in OpenMC,
which is memory-bound, RSBench [6] provides a compute-
bound alternative implementation.

miniBUDE is an implementation of the core computation
of the Bristol University Docking Engine (BUDE) in different
HPC programming models [7]. The benchmark is a virtual
screening run of the NDM-1 protein and runs the energy
evaluation for a single generation of poses repeatedly for
a configurable number of iterations. The execution of the
benchmark requires reading data from a file.

HeCBench is a GitHub repository that contains a collection
of Heterogeneous Computing benchmarks written with CUDA,
HIP, SYCL (DPC++), and OpenMP 4.5 target offloading for
studying performance, portability, and productivity [8]. We
used three benchmarks out of it: hotspot3D, page-rank, and
amgmk, and ported them to the host OpenMP version by
removing all target related code.

Source code modifications: The objective of our work is to
allow direct GPU compilation without any source code modi-
fications. However, due to the limitations that we discussed
in Section III-D we modified some of the benchmarks to
apply our approach. Specifically, we performed the following
modifications in some of the benchmarks:

• Removed all schedule clauses from parallel direc-
tives because they are currently not supported by LLVM
OpenMP when being used in a target region. Note that
it is unrelated to our work.

• Removed or rewrote the code using features that are
not supported by our framework due to the limitation
mentioned in Section III-D, such as variadic functions.

C. Results and Analysis

Fig. 13 shows the slowdown of the host OpenMP code
compiled with our work directly to the GPU (version GPU-D)
over the host OpenMP version (version HST) and the existing
OpenMP target offloading version (version TGT). Both GPU-
D and TGT versions were executed on the Nvidia A100 GPU,
and the HST version was executed on the AMD CPU. Fig. 14
shows the resource usages of TGT and GPU-D version as
reported by nsys. All the libc functions supported by our
prototype are listed in Fig. 15.

The experiment results demonstrate that our prototype im-
plementation can successfully compile a host program to make
it completely run on a GPU, especially for miniBUDE that
uses many libc functions, such as fopen, fread to read
file data, and strcmp, strtoul to manipulate strings. The
performance degradation is also expected because of reasons
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Fig. 13. Slowdown of the host OpenMP version with our work over the host OpenMP version and the original OpenMP target offloading version.

Host version with our work Original target offloading version
# regs # threads StcSMem % comp. # regs # threads StcSMem

XSBench 255 256 14,480 8.96% 174 17000064 9,772
RSBench 250 256 12,412 76.32% 254 10200064 9,772

miniBUDE 193 256 10,440 23.81% 255 16384 9,772
hotspot3D 170 256 10,096 1.18% 142 262144 9,772
page-rank 122 512 9,912 0.40% 42/72/32 10240 9,772
amgmk 255 256 9,968 1.71% 86 125184 9,772

Fig. 14. Comparison of the resource usage between the host version compiled with our work and the original target offloading version. “% comp.” stands for
the percentage of overall runtime spent on the actual computation, aka. kernel execution. It indicates how much serial work is done on the host to prepare for
the computation task on the GPU. The number of threads is calculated by grid size × block size, where grid size is always 1 for our work. Three numbers
appear in the “# regs” for page-rank because it has three target regions.

as follows. First, the “% comp.” column in Fig. 14 shows the
amount of time the benchmark spends in actual “computation”
rather than data initialization. Since most benchmarks spent a
large portion of time running sequential initialization tasks,
e.g., 91% for XSBench, and the performance of one GPU
thread is much worse than one CPU thread, this code is
executed much slower with GPU-D. Although version GPU-D
does not need data transfer between host and GPU for data
mapping, the performance gain can not compensate for the
loss in serial execution for the given programs and inputs. For
miniBUDE, there are four calls to fread in the source code,
and each call only reads a small number of bytes (either 6 or 16
bytes) from the file. That leads to a large number of function
calls to fread at runtime, which means a large number of
RPC calls between host and GPU, causing large overheads.
Next, as we mentioned in Section III-D, we can only use
up to 1024 threads organized in a single team (aka. thread
block). In fact, as shown in Fig. 14 none of the benchmarks
can use 1024 threads because the actual number is capped
by the function call to query the max number of threads
per block that the kernel can use on the target device. It
depends on both the function (e.g., the resource usage of
the kernel) and the device on which the function is currently
loaded. That limits the performance of benchmarks such as
RSBench with heavy computation workload as the native
GPU application will utilize the entire GPU with 10200064
threads in total. If the number of threads is similar, e.g.,
for the page-rank benchmark, the performance degradation is
reduced significantly. While the original GPU version of this

benchmark uses 20× more threads (=parallelism), it is only
3.6× faster.

These results allow us to predict four paths that could deliver
competitive performance without manual porting efforts:

1) Run multiple application instances in parallel to utilize
the various thread blocks, one per instance. Initial exper-
iments show promising results, but resources like memory
can be limiting.

2) Execute parallel regions via multiple teams. This requires
compiler analysis to determine correctness, potentially
combined with transformations and additional code to
combine results across teams, e.g., for reductions.

3) Use compiler transformation to split off multi-threaded
code into separate kernels with reduced resource (mostly
register) usage. As a consequence, more threads might be
available to participate in the parallel regions.

4) “Reverse offload” single-threaded code to the host to
utilize fast host threads. This is simpler in a unified
shared memory (USM) environment but requires auto-
matic memory movement in non-USM systems.

V. RELATED WORKS

A. OpenMP Target Offloading

OpenMP 4.0 introduced target offloading. The OpenMP
offloading support for GPUs in LLVM can be traced back
to the two works presented by [9], [10]. The (PGI) Fortran
front-end, known as Flang, supports OpenMP offloading via
the LLVM OpenMP runtime [11]. Since then, researchers



fseek fflush fclose time ftell
rewind free gettimeofday fread gmtime
fwrite getc fopen feof fgets
pclose strftime popen

memcmp printf malloc strchr strncmp
memcpy strcpy stat srand rand
strtoul atof strncpy strcat abs

Fig. 15. A full list of libc functions that our prototype supports. The upper
group requires support from the host via host RPC, while the lower group
can run directly on the GPU.

have been working on compiler and runtime optimization
for LLVM OpenMP. [12] introduced the first front-end-based
optimizations for Nvidia GPUs that can avoid idle threads and
reduce register usage. [13] presented the TRegion interface
which delays the discovery of SPMD regions to compiler
middle end, contrary to the front-end based approach used
before, which can support more kernels to execute in SPMD
mode. [14] introduced the runtime support for concurrent
execution of OpenMP target tasks. [15] presented OpenMP-
aware program analyses and optimizations that allow effi-
cient execution of the generic, CPU-centric parallelism model
provided by OpenMP on GPUs. [4] presented a co-design
methodology for optimizing applications using a specifically
crafted OpenMP GPU runtime inducing near-zero overhead in
most cases.

B. Host Program on GPUs

Several works have explored the support for executing a host
program on GPUs. [16] proposed making the host’s file system
directly accessible to GPU code. They also implemented an
RPC protocol to coordinate data transfers between the CPU
and GPU. [17] introduced a parallelization framework that can
detect parallelism and generate target code for both X86 CPUs
and Nvidia GPUs. To support those function calls that can
not be natively executed on GPU, they replaced the function
call in LLVM with an interface that eventually the host will
execute the requested function using foreign function interface.
In contrast, our work does not need a specialized compiler and
can be directly used with vanilla LLVM. [18] studied transpar-
ently accelerated binary applications with novel heterogeneous
computing resources without requiring any manual porting or
developer-provided hints.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a direct GPU compilation frame-
work using existing LLVM/OpenMP support. We showed how
our novel generic framework can be used to make an existing
host program execute directly on a GPU without changing
the existing source code. Our wrapper device libc allows us
to execute code that could originally not be compiled on the
GPU, even when it requires features that only work on the
host, such as file processing. The evaluation results prove the
correctness of our implementation and the ability to run full
applications on the GPU with minimal changes. Our prototype

will allow programs to be tested easily on the GPU, as well as
testing the existing GPU backend on less common use cases.

In the future, we would like to refine our approach to make
the process more automatic without the need for explicitly
passing wrapper libraries. Additionally, we believe this could
be used to achieve reasonable performance given additional
optimizations as mentioned in Section IV-C. This would allow
users to easily test their host applications on the GPU without
needing to change any user code.
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