
OpenMP Kernel Language Extensions for Performance Portable
GPU Codes

Shilei Tian
shilei.tian@stonybrook.edu
Stony Brook University
Stony Brook, NY, USA

Tom Scogland
scogland1@llnl.gov

Lawrence Livermore National Laboratory
Livermore, CA, USA

Barbara Chapman
barbara.chapman@stonybrook.edu

Stony Brook University
Stony Brook, NY, USA

Johannes Doerfert
jdoerfert@llnl.gov

Lawrence Livermore National Laboratory
Livermore, CA, USA

ABSTRACT
In contemporary high-performance computing architectures, the
integration of GPU accelerators has become increasingly prevalent.
To harness the full potential of these accelerators, developers often
resort to vendor-specific kernel languages, such as CUDA. While
this approach ensures optimal efficiency, it inherently compromises
portability and engenders vendor dependency. Existing portable
programming models, such as OpenMP, while promising, demand
extensive code rewriting due to their foundamental difference from
kernel languages.

In this work, we introduce extensions to LLVM OpenMP, trans-
forming it into a versatile and performance portable kernel language
for GPU programming. These extensions allow for the seamless
porting of programs from kernel languages to high-performance
OpenMP GPU programs with minimal modifications. To evaluate
our extension, we implemented a proof-of-concept prototype that
contains a subset of extensions we proposed. We ported six es-
tablished CUDA proxy and benchmark applications and evaluated
their performance on both AMD and NVIDIA platforms. By com-
paring with native versions (HIP and CUDA), our results show that
OpenMP, augmented with our extensions, can not only match but
also in some cases exceed the performance of kernel languages,
thereby offering performance portability with minimal effort from
application developers.

CCS CONCEPTS
• Software and its engineering → Compilers; Parallel program-
ming languages.

KEYWORDS
OpenMP, GPU, CUDA, HIP

ACM Reference Format:
Shilei Tian, Tom Scogland, Barbara Chapman, and Johannes Doerfert. 2023.
OpenMP Kernel Language Extensions for Performance Portable GPU Codes.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624164

In Workshops of The International Conference on High Performance Com-
puting, Network, Storage, and Analysis (SC-W 2023), November 12–17, 2023,
Denver, CO, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3624062.3624164

1 INTRODUCTION
In the evolving domain of high-performance computing, the inte-
gration of GPUs for general-purpose computing has emerged as
a pivotal trend. These GPUs are often programmed using vendor-
specific “kernel languages” such as CUDA and HIP. While these
languages offer tailored environments for GPU-centric tasks, ensur-
ing optimal performance, they inherently lack cross-vendor porta-
bility. As the GPU ecosystem becomes increasingly diverse, there
arises a compelling need for programming frameworks that meld
the robust performance of kernel languages with the adaptability
of cross-vendor compatibility.

OpenMP [17] has emerged as a prominent, performance-portable
heterogeneous programming model. It provides developers with
a suite of intuitive directives and interfaces, facilitating code ex-
ecution on both host CPUs and GPUs. This adaptability ensures
that applications can seamlessly harness the computational capa-
bilities of a wide range of hardware architectures. Yet, the intrinsic
disparities between OpenMP and kernel languages often demand
significant code adaptations. While OpenMP allows developers to
write single instruction multiple threads (SIMT) style code, similar
to kernel languages, to a degree, thereby potentially easing the tran-
sition, it falls short in certain areas. Notably, the absence of support
for specific functionalities, such as granular synchronization levels,
makes a complete transition challenging.

In this work, we introduce novel extensions to LLVM OpenMP,
designed to enable users to craft their GPU code in SIMT style,
while simultaneously leveraging the performance portability in-
trinsic to OpenMP. These extensions simplify the transition from
kernel languages to OpenMP, often reducing the porting process
to text replacement. Moreover, our extensions integrate with host
OpenMP tasking support, adeptly managing dependencies and en-
suring efficient execution across both host CPUs and GPUs. An
added advantage is the ability to blend traditional and kernel-like
OpenMP code on GPUs, providing developers with the flexibil-
ity to preserve existing codebases while selectively incorporating
GPU-specific optimizations.

https://orcid.org/0000-0001-6468-6839
https://orcid.org/0000-0001-7234-5743
https://orcid.org/0000-0001-8449-8579
https://orcid.org/0000-0001-7870-8963
https://doi.org/10.1145/3624062.3624164
https://doi.org/10.1145/3624062.3624164
https://doi.org/10.1145/3624062.3624164

SC-W 2023, November 12–17, 2023, Denver, CO, USA S. Tian, T. Scogland, et al.

To evalute the efficacy of our proposal, we implemented a proof-
of-concept prototype that contains a subset of the proposed exten-
sions. We ported six established proxy and benchmark applications
from their CUDA versions and evaluated their performance on both
AMD and NVIDIA platforms, where we compared the performance
to native program versions (HIP and CUDA). The results demon-
strate that OpenMP, augmented with our proposed extensions, can
not only match the performance of kernel languages but also, in
some cases, outperform them, offering performance portability with
minimal effort from application developers.

The rest of this paper is structured as follows: Section 2 explains
the core principles of GPU programming via kernel languages and
OpenMP; Section 3 details our extensions and design decisions;
Section 4 presents the evaluation results of our proof-of-concept
implementation; Section 5 discusses related works; and Section 6
concludes the paper.

2 BACKGROUND
In this section, we delve into the core principles of GPU program-
ming with kernel languages and OpenMP target offloading. While
we use CUDA as our primary example, the concepts are broadly
applicable to most kernel languages. Figure 1 shows a simple CUDA
program, and its OpenMP equivalent is shown in Figure 2. We will
highlight the difference between the two approaches and identify
the gaps in OpenMP that have driven our proposed extensions.

2.1 Kernel
A kernel serves as the GPU program’s entry point, similar to the
main function in host programs. This program is initiated once
launched from the host. CUDAkernels are definedwith the __global__
keyword, as seen by the kernel function in Figure 1. Conversely,
OpenMP does not need an explicit kernel definition; the body of a
target region is outlined as a kernel by the OpenMP compiler.

2.2 Global Symbol
A global symbol, either a function or a global variable, is accessible
on GPUs only if it is a device global symbol. In CUDA, functions
can only call device functions and access device global variables.
These are identified by the __device__ keyword, as shown by the
use function in Figure 1. In OpenMP, symbols used within a target
region do not require explicit annotation if they are in the same
translation unit (TU). However, for symbols that are not directly
used within a target region of the current TU but visible to others,
they must be defined within the declare target directive.

2.3 Kernel Launch
CUDA employs the chevron syntax <<<...>>> to invoke kernels,
specifying grid size, block size, dynamic sharedmemory, and stream.
For OpenMP, the compiler automatically generates the host code
for a target region to launch the corresponding kernel. In LLVM
OpenMP, an OpenMP team is mapped to a thread block, with grid
and block sizes specified via num_teams and thread_limit clauses,
respectively. However, OpenMP currently lacks support for multi-
dimensional grid and block. In addition, the target construct in
OpenMP is synchronous by default. This means that, unlike CUDA’s
kernel launch, there is no need for explicit synchronization post the

__device__ int use(int &a, int &b) { ... }

__global__ void kernel(int *a, int *b, int n) {
__shared__ int shared[128];
int tid = threadIdx.x;
if (tid == 0) {
/* initialize shared */

}
__syncthreads();
int idx = blockIdx.x * blockDim.x + tid;
if (idx < n)
b[idx] = use(a[idx], shared[tid]);

}

int main(int argc, char *argv[]) {
constexpr const int n = 100000;
constexpr const size_t size = n * sizeof(int);
// Allocate host memory for input and output
int *h_a = new int[n];
int *h_b = new int[n];
int *d_a, *d_b;
// Allocate device memory for the input and output
cudaMalloc(&d_a, bytes);
cudaMalloc(&d_b, bytes);
// Copy inputs to device
cudaMemcpy(d_a, h_a, size, cudaMemcpyHostToDevice);
// Set up grid size (launch parameter)
int bsize = 128;
int gsize = (n + bsize - 1) / bsize;
// Launch the kernel
kernel<<<gsize, bsize>>>(d_a, d_b, n);
// Copy output back to host
cudaMemcpy(h_b, d_b, size, cudaMemcpyDeviceToHost);
// Synchronize the device to make sure the output
// is copied back
cudaDeviceSynchronize();
// Free device memory
cudaFree(d_a);
cudaFree(d_b);
// Free host memory
delete[] h_a;
delete[] h_b;
return 0;

}

Figure 1: A simple CUDA program.

int use(int &a, int &b) { ... }

int main(int argc, char *argv[]) {
constexpr const int n = 100000;
// Allocate host memory for input and output
int *a = new int[n];
int *b = new int[n];
int bsize = 128;
int gsize = (n + bsize - 1) / bsize;
// Launch the kernel

#pragma omp target teams num_teams(gsize) thread_limit(bszie) map(to:
a[0:n]) map(from: b[0:n])

{
int shared[128];
/* initialize shared */
int lb = omp_get_team_num() * bsize;
int ub = lb + bsize;

#pragma omp parallel for
for (int i = lb; i < min(ub, n); ++i)
b[i] = use(a[i], shared[i - lb];

}
delete[] h_a;
delete[] h_b;
return 0;

}

Figure 2: A typical OpenMP implementation of the CUDA
program shown in Figure 1.

OpenMP Kernel Language Extensions for Performance Portable GPU Codes SC-W 2023, November 12–17, 2023, Denver, CO, USA

target region. OpenMP ensures that the program progresses only
after all operations associated with the target region are complete.

2.4 Dependence and Stream
A stream is essentially an ordered queue of operations, facilitat-
ing asynchronous tasks and establishing dependencies. Operations
within a single stream are executed sequentially while operations
across different streams may execute concurrently. In CUDA, a
majority of operations, including both kernel launches and runtime
APIs, utilize a stream object to designate the queue in which they
are enqueued.

OpenMP offers asynchronous operations through the nowait
clause applied to relevant directives [26]. Dependencies can be
established using the depend clause, while synchronization is man-
aged via the taskwait construct. However, the depend clause comes
with inherent limitations, making its application less intuitive com-
pared to the approach of streams.

2.5 Memory Hierarchy
GPUs possess a diverse memory hierarchy, each with distinct char-
acteristics like latency, bandwidth, and access modes. CUDA sup-
ports four commonly used computational memory spaces1: pri-
vate, shared, global, and constant, with respective keywords like
__private__ and __shared__. In OpenMP, the allocate direc-
tive, combined with the appropriate allocator, serves a similar
purpose2.

2.6 Data Mapping
Managing data between host and device typically involves: 1) de-
vice memory allocation, 2) host-to-device data transfer, and 3)
post-kernel execution, device-to-host data transfer. In CUDA, these
steps are explicitly executed using runtime APIs, e.g., cudaMalloc
and cudaMemcpy. OpenMP offers two data management strate-
gies: directive-based and API-based. Directives like target data
and target update automate these steps, while APIs such as
omp_target_alloc and omp_target_memcpy offer explicit control.

2.7 Synchronization
CUDA offers a multi-level synchronization mechanism, encom-
passing warp, block, and kernel levels. Additionally, it furnishes
primitives like shuffle for efficient thread communication. In con-
trast, while OpenMP provides the barrier directive for explicit
synchronization and mandates implicit barriers at the end of spe-
cific regions, it currently falls short in providing the granularity of
control that CUDA offers.

2.8 Workload Distribution
In CUDA, the onus is on the users to manually distribute workloads
among threads, typically by determining memory access offsets us-
ing thread and block identifiers, as exemplified by the variable id in
Figure 1. OpenMP, however, leans towards automation. Commonly,

1Texture memory is not widely used in computation.
2Technically this is a compiler work around. The OpenMP language committee is
proposing a new approach to define variables in different memory space. For example,
#pragma omp groupprivate(team: var) can be used to define a variable var in
shared memory. We will use the new syntax in the rest of the paper.

developers employ work-sharing constructs like distribute and
for directives to distrbute workloads. Yet, there is flexibility; one
can craft OpenMP code in SIMT style, as illustrated in Figure 3.
This approach, however, comes with limitations:

• As highlighted in Section 2.3, OpenMP’s lack of support for multi-
dimensional grid/block configurations necessitates the transla-
tion of workloads into a one-dimensional space.

• The aforementioned lack of granular control in Section 2.7 makes
it challenging to implement certain functions.

#pragma omp target teams num_teams(gsize) thread_limit(bsize)
#pragma omp parallel
{
int shared[128];

#pragma omp groupprivate(team: shared)
int threadId = omp_get_thread_num();
if (threadId == 0) {
/* initialize shared */

}
#pragma omp barrier
int blockId = omp_get_team_num();
int blockDim = omp_get_team_size();
int id = blockId * blockDim + threadId;
if (id < n)
b[id] = use(a[id], tmp[threadIdx]);

}

Figure 3: Write the target region of Figure 2 in SIMT style.

3 EXTENSION DESIGN
In this section we will describe our proposed extentions and the
design decisions incorporated into LLVM OpenMP, enabling users
to craft OpenMP programs in a SIMT style.

3.1 ompx_bare Clause
Figure 3 illustrates that, to invoke a SIMT style target region, users
must use the target teams construct followed by a parallel con-
struct3. Despite of the limiation mentioned before, such a structure
may appear convoluted to those unacquainted with OpenMP’s
concepts.

To address this, we introduce the ompx_bare clause that can be
used on the target teams construct. This is not simply a “syn-
tax sugar” for the previous nested constructs. When this clause is
present, the target region operates in a “bare metal” mode, similar
to the SIMT model of kernel languages. The front end will not gen-
erate code to initialize the OpenMP device runtime that ensures the
compliance with the OpenMP execution model [5]. We retain the
teams clause to preserve the semantic consistency, especially when
using num_teams and thread_limit to define grid/block sizes. The
ompx_bare clause also changes the scope of variables defined in the
region such that they will not be globalized according to OpenMP
semantics [9]. Now a bare metal OpenMP target region can be
launched in the following approach:

3While the target teams parallel construct is currently disallowed, OpenMP 6.0
is set to remove this restriction.

SC-W 2023, November 12–17, 2023, Denver, CO, USA S. Tian, T. Scogland, et al.

#pragma omp target teams ompx_bare
{
int local_var;
int shared_var;

#pragma omp groupprivate(team: shared_var)

// All threads in all teams/blocks are active.
}

Figure 4: OpenMP bare metal model. Local variables defined
in the scope will not be globalized. Shared variables can be
defined using groupprivate directive.

3.2 Multi-Dimensional Grid and Block
The num_teams and thread_limit clauses are augmented to ac-
cept a list of integers to support multi-dimensional grid and block.
For instance, a three-dimensional CUDA grid size represented as
dim3 gridSize(128, 64, 32) can be equivalently expressed us-
ing num_teams(128, 64, 32). While we do not impose a dimen-
sionality constraint at the OpenMP level, any dimensions exceeding
a device’s capability will be disregarded.

3.3 Device API
Our extensions furnish APIs that enable users to interact with a
device in the same way as a kernel language. To get a portable
device API we follow the design of the OpenMP device runtime
introduced by Tian et al. [25]. We provide two sets of APIs: C
APIs prefixed with ompx_, and C++ APIs encapsulated within the
ompx namespace. They can be extended to support Fortran. In the
following we will briefly introduce two sets of widely used APIs.

3.3.1 Thread Indexing. Both CUDA and HIP provide four built-in
thread indexing variables: threadIdx, blockIdx, blockDim, and
gridDim. Each of these has three data members, {x,y,z}, corre-
sponding to their respective dimensions. In our extension, this
information is retrieved through OpenMP-like APIs. For instance,
the C API ompx_thread_id_x() and its C++ counterpart ompx::
thread_id(ompx::DIM_X) are equivalent to threadIdx.x.

3.3.2 Synchronization. In our design, we provide APIs to bridge
the gap disucssed in Section 2.7. Examples include ompx_sync_warp
4 and ompx_sync_thread_block. Furthermore, we also introduce
APIs for warp-level primitives, such as ompx_shfl_sync.

3.4 Host API
While OpenMP’s comprehensive set of directives can automate
numerous tasks—including memory allocation and data movement,
as discussed in Section 2.6, there remains a need for direct API
interactions with the device. To address this, we expand the APIs
by adapting the user-facing API implementations from Doerfert
et al. [4]. These enhanced APIs can be integrated under the ompx
umbrella, such as ompx_malloc for cudaMalloc.

4Meanwhile, the OpenMP language committee is looking to specify “warp” (or forward
progress group) as another level of contention group.

3.5 depend Clause
OpenMP 5.1 introduced the interop construct, facilitating interop-
erability with foreign runtime environments. This allows users to
retrieve a stream from the OpenMP runtime and use it for opera-
tions in other environments.

As discussed in Section 2.4, the depend clause in OpenMP typi-
cally orchestrates dependencies for asynchronous operations.While
it might seem logical to use streams directly into the depend clause
to manage the execution of the associated construct, the current de-
sign of the depend clause does not allow it because only the location
of the item, not its semantics, is taken when resolving dependences.
To bridge this gap, our extension proposes an enhancement to the
depend clause. We introduce a new dependence type, interopobj,
where the associated item is an interop object. The semantics of
this interop object dictate the handling of the corresponding oper-
ations. For instance, the kernel corresponding to the target region
in Figure 5 would be dispatched into the stream linked with obj.

omp_interop_t obj = omp_interop_none;
#pragma omp interop init(targetsync: obj)
#pragma omp target teams ompx_bare nowait depend(interopobj: obj)
{
...

}

#pragma omp taskwait depend(interopobj: obj)

Figure 5: Put an asynchronous target region into the stream
associated with the interop object obj by using extended
depend clause. The taskwait directive that depends on obj
implements a stream synchronization.

3.6 Interoperability with Vendor Libraries
Vendor-specific libraries are prevalent and offer high efficiency, but
they often adhere strictly to their proprietary programming models.
For instance, cuBLAS [16] is exclusively tailored for CUDA. For
OpenMP, crafting a performance-portable library with the same
capabilities as vendor libraries from the ground up is not feasible.

To address this, our extension introduces a lightweight wrap-
per layer. This layer boasts function signatures similar to those
in vendor libraries, enabling users to effortlessly transition from
vendor-specific implementations. Under the hood, this wrapper
layer invokes the appropriate vendor library based on the offload-
ing target determined at compile time.

4 EVALUATION
The primary objective of our evaluation is to ascertain whether
OpenMP, when augmented with the kernel language extensions
proposed in this work, can rival the performance of native program-
ming models on NVIDIA and AMD GPUs. To address this question,
we implemented a proof-of-concept prototype based on LLVM 18
that contains extensions described in Sections 3.1 and 3.3.

4.1 Methodology
Our evaluation setup included both AMD and NVIDIA systems,
with the hardware and software configurations detailed in Figure 7.

OpenMP Kernel Language Extensions for Performance Portable GPU Codes SC-W 2023, November 12–17, 2023, Denver, CO, USA

Name Description Command Line
XSBench Monte Carlo neutron transport algorithm -m event

RSBench Monte Carlo neutron transport algorithm -m event

SU3 Lattice QCD SU3 matrix multiply -i 1000 -l 32 -t 128 -v 3 -w 1

AIDW Adaptive inverse distance weighting 100 0 100

Adam Adaptive moment estimation 10000 200 100

Stencil 1D 1D version of stencil computation 134217728 1000

Figure 6: Benchmarks including brief summary and the command line arguments.

We chose six benchmarks from HeCBench [11] benchmark suite.
Figure 6 shows the details of each benchmark and the command
line arguments we used when running the benchmark. Each bench-
mark in the suite has four versions: CUDA, HIP, OpenMP target
offloading, and SYCL. We ported the OpenMP kernel language ver-
sion from the CUDA version and measured the performance of the
following four versions:
• OpenMP kernel language: This version is compiled with our
prototype. We refer to it as ompx in our plots and discussion.

• OpenMP target offloading: This version is compiled with LLVM/-
Clang, and we refer to it as omp.

• Native with LLVM/Clang: This version is compiled with LLVM/-
Clang, and we refer to it as cuda and hip respectively.

• Native with vendor compiler: This version is compiled with the
corresponding vendor compiler. It is referred as cuda-nvcc and
hip-hipcc respectively.

AMD NVIDIA
GPU AMD MI250 Nvidia A100 (40 GB)
CPU AMD EPYC 7532

Memory 256 GB 512 GB
SDK ROCm 5.5 CUDA 11.8

Figure 7: Hardware and software configuration of the AMD
and NVIDIA systems.

4.2 Experiment Results
Figure 8 presents the execution times for each benchmark version
on both the NVIDIA A100 system (Figure 8a to Figure 8f) and AMD
MI250 system (Figure 8g to Figure 8l). The benchmarks themselves
reported all execution times.

4.2.1 XSBench. XSBench [28] serves as proxy applications for the
Open Monte Carlo (OpenMC) project [19], which employs the
monte carlo methodology to simulate neutron and photon transport.
XSBench focuses on a memory-intensive implementation, com-
puting the continuous energy macroscopic neutron cross-section
lookup, a critical component in neutron transport studies. The
execution times for all versions on both systems are depicted in
Figures 8a and 8g. Notably, the ompx version consistently outper-
forms the native versions compiled with both LLVM/Clang and the
vendor compiler across both systems. The results from the omp
version were excluded due to the benchmark reporting an invalid
checksum, rendering the results non-comparable.

4.2.2 RSBench. Similar to XSBench, RSBench [27] is also a proxy
applications for the OpenMC project. However, it distinguishes
from XSBench by offering a compute-bound implementation. The
execution times for all versions on both systems are shown in
Figures 8b and 8h. Similar to the XSBench results, the ompx ver-
sion exceeds the performance of the native version compiled with
LLVM/Clang on both systems. Interestingly, on the NVIDIA A100
system, the omp version outperforms the CUDA version. Profil-
ing results suggest that, despite a higher register usage (162), the
omp version leverages 2KB of shared memory. This indicates that
the heap-to-shared optimization in OpenMP [9] effectively moves
certain data to shared memory, thereby enhancing performance.

4.2.3 SU3. SU3 implements a sparse matrix-matrix multiplication
routine specific to the Special Unitary group of order 3, denoted as
SU(3). The core computation is derived from MLIC-Lattice QCD [3].
This application delves into the quantum chromodynamics (QCD)
theory, which studies the strong interactions between quarks and
gluons. When evaluated on the NVIDIA A100 system, as shown
in Figure 8c, the ompx variant lags behind the CUDA version by
approximately 9%. A deeper dive into the profiling data shows that
the CUDA version is more register-efficient, utilizing 24 registers
compared to the 26 used by the ompx version. A detailed examina-
tion of the PTX code generated for ompx version further reveals
that despite functions inlined into the kernel, these functions are
not eliminated, leading to a substantial device binary size difference
(29KB for ompx versus an only 3.9KB for CUDA). On the AMD sys-
tem, as shown in Figure 8i, the ompx version outperforms the HIP
version by 28%. Across both systems, the ompx version consistently
demonstrates better performance over the omp version.

4.2.4 AIDW. Adaptive inverse distance weighting (AIDW) in the
benchmark suite is an efficient parallel AIDW algorithm by adopt-
ing fast k-nearest neighbors search [15]. As depicted in Figures 8d
and 8j, on the AMD MI250 system, the OpenMP version aligns
closely with the performance of the native version, irrespective of
the compiler used. On the NVIDIA A100 system, while it matches
the performance of the CUDA version compiled with nvcc, it is
slightly slower by about 5% when compared to the version compiled
using LLVM/Clang. A detailed examination of the PTX code gener-
ated for both the ompx and CUDA versions highlighted that shared
variables within the kernel are demoted in the CUDA version.

4.2.5 Adam. Adaptive moment estimation (Adam) [13] is an im-
portant optimization algorithm in machine learning that computes
adaptive learning rates for each parameter. As shown in Figures 8e
and 8k, the ompx version matches the performance of the CUDA

SC-W 2023, November 12–17, 2023, Denver, CO, USA S. Tian, T. Scogland, et al.

ompx omp cuda cuda-nvcc
0

0.2

0.4

0.6

0.8

1

Ex
ec
ut
io
n
tim

e
(s
)

(a) Execution time of XSBench

ompx omp cuda cuda-nvcc
0

0.5

1

1.5

2

2.5

Ex
ec
ut
io
n
tim

e
(s
)

(b) Execution time of RSBench

ompx omp cuda cuda-nvcc
0

0.5

1

1.5

Ex
ec
ut
io
n
tim

e
(s
)

(c) Execution time of SU3

ompx omp cuda cuda-nvcc
0

20

40

60

80

100

Ex
ec
ut
io
n
tim

e
(m

s)

(d) Execution time of AIDW

ompx omp cuda cuda-nvcc
0

5 · 10−2

0.1

0.15

0.2

Ex
ec
ut
io
n
tim

e
(m

s)

1.
6m

s

(e) Execution time of Adam

ompx omp cuda cuda-nvcc
0

0.5

1

1.5

Ex
ec
ut
io
n
tim

e
(m

s)

14
5.
6m

s

(f) Execution time of Stencil 1D

ompx omp hip hip-hipcc
0

0.2

0.4

0.6

0.8

Ex
ec
ut
io
n
tim

e
(s
)

(g) Execution time of XSBench

ompx omp hip hip-hipcc
0

1

2

3

4

Ex
ec
ut
io
n
tim

e
(s
)

(h) Execution time of RSBench

ompx omp hip hip-hipcc
0

0.5

1

1.5

2

Ex
ec
ut
io
n
tim

e
(s
)

(i) Execution time of SU3

ompx omp hip hip-hipcc
0

50

100

150

200

250

Ex
ec
ut
io
n
tim

e
(m

s)

(j) Execution time of AIDW

ompx omp hip hip-hipcc
0

5 · 10−2

0.1

0.15

Ex
ec
ut
io
n
tim

e
(m

s)

1.
59
m
s

(k) Execution time of Adam

ompx omp hip hip-hipcc
0

0.5

1

Ex
ec
ut
io
n
tim

e
(m

s)

60
.8
7m

s

(l) Execution time of Stencil 1D

Figure 8: Performance comparison of the six benchmarks on NVIDIA A100 system (Figure 8a to Figure 8f) and AMDMI250
system (Figure 8g to Figure 8l). Each figure has four bars: “ompx” stands for the OpenMP kernel language version, “omp” is the
original OpenMP target offloading version, “cuda” and “hip” represent the native version compiled with LLVM/Clang, and
“cuda-nvcc” and “hip-hipcc” are the native version compiled with vendor compiler. The dotted line is the baseline, which is
“cuda” and “hip” version respectively.

OpenMP Kernel Language Extensions for Performance Portable GPU Codes SC-W 2023, November 12–17, 2023, Denver, CO, USA

version on NVIDIA A100 system, and 16.6% faster than the HIP
version on AMD MI250 system. The omp version is 8× slower due
to an issue in LLVM OpenMP that results in the launch of only 32
threads per thread block.

4.2.6 Stencil 1D. Stencil is a classical numerical data processing
computation which updates array elements according to some fixed
pattern. The CUDA version was adapted from a CUDA tutorial
demonstrating the use of shared memory. Figures 8f and 8l shows
that with our extension, the ompx version can outperform the
native version on both systems. The omp version is significantly
slow due to the inability to rewrite the generic state machine [9].

5 RELATEDWORKS
Solutions aiming for performance portability in GPU program-
ming typically fall into two main categories: programming mod-
els equipped with dedicated compilers and libraries that provide
an abstraction layer over multiple programming paradigms. The
first category includes models like OpenMP (from version 4 on-
wards) [17], OpenCL [12], and SYCL [23] for computational tasks,
as well as OpenGL [20] and Vulkan [24] for graphical tasks. While
these models offer portability across diverse hardware platforms,
they come with their own challenges in terms of ease of use and per-
formance tuning. Notably, for programs already adapted to kernel
languages, transitioning to any of these models is seldom straight-
forward. HIP [1] can technically be counted as portable since it
can target both AMD and NVIDIA GPUs. The second category
features solutions like Kokkos [6], RAJA [2], and the parallel algo-
rithms introduced in C++17 [10]. Given their need to abstract over
pre-existing programming models, these solutions often present
higher-level interfaces. This abstraction can lead to increased over-
head and a more intensive porting process, especially for code
originally crafted in a SIMT style.

Furthermore, there have been works aimed at enabling propri-
etary programming models to function on diverse platforms. Exam-
ples include MCUDA [22], COX [8], and CuPBoP [7]. While these
efforts facilitate some degree of portability to CPUs, they often
come with performance trade-offs and do not extend support to
other GPU platforms.

Since the introduction of target offloading, OpenMP has emerged
as a promising performance-portable programmingmodel for GPUs.
This capability was further realized in LLVM through the efforts
of Doerfert et al. [5], Huber et al. [9] by optimizing OpenMP for
efficient execution on GPUs. Beyond targeting accelerators, Lu et al.
[14], Patel and Doerfert [18], Shan et al. [21] expanded the LLVM
OpenMP target offloading support to encompass multi-node com-
putation, pushing OpenMP’s capabilities beyond just intra-node
computation. Building on the performance portability of OpenMP
and the existing LLVM/OpenMP target offloading infrastructure,
Doerfert et al. [4] introduced a compiler-based method to convert
CUDA code into portable OpenMP code. Our work draws from their
user-facing APIs, integrating them into our proposed extension.

6 CONCLUSION AND FUTUREWORK
In this work, we introduced novel extensions to LLVMOpenMP that
enable developers to write GPU code in a SIMT style that is similar
to kernel languages, while still benefiting from the performance

portability that OpenMP offers. These extensions aim to make
the transition from kernel languages to OpenMP more straightfor-
ward, often reducing the process to simple text replacements. Our
proof-of-concept implementation and subsequent evaluations un-
derscored the efficiency of our approach. Not only does our solution
simplify the porting process, but it also ensures that performance
is on par with native kernel languages.

In the future, we will fully implement all the proposed extensions
within the LLVM framework. Beyond that, we plan to refine these
extensions further. A significant avenue of exploration for us will
be the potential integration of these extensions with code rewriting
tools. This integration aims to simplify the transition from kernel
languages to OpenMP, further reducing the burden on developers.

ACKNOWLEDGMENTS
The views and opinions of the authors do not necessarily reflect
those of the U.S. government or Lawrence Livermore National Se-
curity, LLC neither of whom nor any of their employees make any
endorsements, express or implied warranties or representations or
assume any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of the information contained herein. This
work was in parts prepared by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344 (LLNL-CONF-854558).
We also gratefully acknowledge the computing resources provided
and operated by the Joint Laboratory for System Evaluation at
Argonne National Laboratory.

REFERENCES
[1] AMD. 2023. HIP Documentation. https://rocm.docs.amd.com/projects/HIP/en/

latest/
[2] David Beckingsale, Thomas R.W. Scogland, Jason Burmark, RichHornung, Holger

Jones, William Killian, Adam J. Kunen, Olga Pearce, Peter Robinson, and Brian S.
Ryujin. 2019. RAJA: Portable Performance for Large-Scale Scientific Applications.
In International Workshop on Performance, Portability and Productivity in HPC
(P3HPC). IEEE, Denver, CO, USA, 71–81. https://doi.org/10.1109/P3HPC49587.
2019.00012

[3] Carleton DeTar, Steven Gottlieb, Ruizi Li, and Doug Toussaint. 2017. MILC Code
Performance on High End CPU and GPU Supercomputer Clusters. arXiv 175 (11
2017), 1–8. arXiv:1712.00143

[4] Johannes Doerfert, Marc Jasper, Joseph Huber, Khaled Abdelaal, Giorgis Geor-
gakoudis, Thomas Scogland, and Konstantinos Parasyris. 2022. Breaking the
Vendor Lock: Performance Portable Programming through OpenMP as Tar-
get Independent Runtime Layer. In International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT). IEEE, Chicago, Illinois, 494–504.
https://doi.org/10.1145/3559009.3569687

[5] Johannes Doerfert, Atmn Patel, Joseph Huber, Shilei Tian, Jose Manuel Monsalve
Diaz, Barbara M. Chapman, and Giorgis Georgakoudis. 2022. Co-Designing an
OpenMP GPU Runtime and Optimizations for Near-Zero Overhead Execution.
In International Parallel and Distributed Processing Symposium (IPDPS), May 30 -
June 3, 2022. IEEE, Lyon, France, 504–514. https://doi.org/10.1109/IPDPS53621.
2022.00055

[6] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. 2014. Kokkos:
Enablingmanycore performance portability through polymorphicmemory access
patterns. Journal of Parallel and Distributed Computing (JPDC) 74, 12 (2014),
3202–3216. https://doi.org/10.1016/j.jpdc.2014.07.003

[7] Ruobing Han, Jun Chen, Bhanu Garg, Jeffrey Young, Jaewoong Sim, and Hyesoon
Kim. 2023. CuPBoP: A Framework to Make CUDA Portable. InAnnual Symposium
on Principles and Practice of Parallel Programming (PPoPP). ACM, Montreal, QC,
Canada, 444–446. https://doi.org/10.1145/3572848.3577504

[8] Ruobing Han, Jaewon Lee, Jaewoong Sim, and Hyesoon Kim. 2022. COX : Expos-
ing CUDA Warp-level Functions to CPUs. ACM Transactions on Architecture and
Code Optimization 19, 4 (2022), 59:1–59:25. https://doi.org/10.1145/3554736

[9] Joseph Huber, Melanie Cornelius, Giorgis Georgakoudis, Shilei Tian, Jose
Manuel Monsalve Diaz, Kuter Dinel, Barbara M. Chapman, and Johannes Doer-
fert. 2022. Efficient Execution of OpenMP on GPUs. In International Symposium
on Code Generation and Optimization (CGO), April 2-6, 2022. IEEE, Seoul, Republic
of Korea, 41–52. https://doi.org/10.1109/CGO53902.2022.9741290

https://rocm.docs.amd.com/projects/HIP/en/latest/
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://doi.org/10.1109/P3HPC49587.2019.00012
https://doi.org/10.1109/P3HPC49587.2019.00012
https://arxiv.org/abs/1712.00143
https://doi.org/10.1145/3559009.3569687
https://doi.org/10.1109/IPDPS53621.2022.00055
https://doi.org/10.1109/IPDPS53621.2022.00055
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1145/3572848.3577504
https://doi.org/10.1145/3554736
https://doi.org/10.1109/CGO53902.2022.9741290

SC-W 2023, November 12–17, 2023, Denver, CO, USA S. Tian, T. Scogland, et al.

[10] International Organization for Standardization. 2017. Programming languages —
C++. https://www.iso.org/standard/68564.html

[11] Zheming Jin. 2023. HeCBench. https://github.com/zjin-lcf/HeCBench
[12] Khronos OpenCL Working Group. 2023. The OpenCL Specification. https:

//registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
[13] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In International Conference on Learning Representations (ICLR). arXiv,
San Diego, CA, USA, 1–15. http://arxiv.org/abs/1412.6980

[14] Wenbin Lu, Baodi Shan, Eric Raut, Jie Meng, Mauricio Araya-Polo, Johannes
Doerfert, Abid Muslim Malik, and Barbara M. Chapman. 2022. Towards Efficient
Remote OpenMP Offloading. In International Workshop on OpenMP (IWOMP),
Vol. 13527. Springer, Chattanooga, TN, USA, 17–31. https://doi.org/10.1007/978-
3-031-15922-0_2

[15] Gang Mei, Nengxiong Xu, and Liangliang Xu. 2016. Improving GPU-accelerated
Adaptive IDW Interpolation Algorithm Using Fast kNN Search. CoRR
abs/1601.05904 (2016), 1–12. arXiv:1601.05904 http://arxiv.org/abs/1601.05904

[16] NVIDIA. 2023. cuBLAS. https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
[17] OpenMP ARB. 2021. OpenMP Application Programming Interface. https:

//www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
[18] Atmn Patel and Johannes Doerfert. 2022. Remote OpenMP Offloading. In ISC

High Performance (ISC) (Lecture Notes in Computer Science, Vol. 13289). Springer,
Hamburg, Germany, 315–333. https://doi.org/10.1007/978-3-031-07312-0_16

[19] Paul K Romano and Benoit Forget. 2013. The OpenMC Monte Carlo Particle
Transport Code. Annals of Nuclear Energy 51 (2013), 274–281.

[20] Mark Segal and Kurt Akeley. 2022. The OpenGL Graphics System: A Specification.
https://registry.khronos.org/OpenGL/specs/gl/glspec46.core.pdf

[21] Baodi Shan, Mauricio Araya-Polo, Abid M. Malik, and Barbara M. Chapman.
2023. MPI-based Remote OpenMP Offloading: A More Efficient and Easy-to-
use Implementation. In International Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM). ACM, Montreal, QC, Canada,

50–59. https://doi.org/10.1145/3582514.3582519
[22] John A. Stratton, Sam S. Stone, andWen-meiW. Hwu. 2008. MCUDA: An Efficient

Implementation of CUDA Kernels for Multi-core CPUs. In International Workshop
on Languages and Compilers for Parallel Computing (LCPC) (Lecture Notes in
Computer Science, Vol. 5335), José Nelson Amaral (Ed.). Springer, Edmonton,
Canada, 16–30. https://doi.org/10.1007/978-3-540-89740-8_2

[23] The Khronos SYCL Working Group. 2020. SYCL 2020 Specification. https:
//registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf

[24] The Khronos Vulkan Working Group. 2022. Vulkan - A Specification. https:
//registry.khronos.org/vulkan/specs/1.3-extensions/pdf/vkspec.pdf

[25] Shilei Tian, Jon Chesterfield, Johannes Doerfert, and Barbara M. Chapman. 2021.
Experience Report: Writing a Portable GPU Runtime with OpenMP 5.1. In In-
ternational Workshop on OpenMP (IWOMP), September 14-16, 2021, Vol. 12870.
Springer, Bristol, UK, 159–169. https://doi.org/10.1007/978-3-030-85262-7_11

[26] Shilei Tian, Johannes Doerfert, and Barbara M. Chapman. 2020. Concurrent
Execution of Deferred OpenMP Target Tasks with Hidden Helper Threads. In
Languages and Compilers for Parallel Computing (LCPC), October 14-16, 2020,
Vol. 13149. Springer, Stony Brook, NY, USA, 41–56. https://doi.org/10.1007/978-
3-030-95953-1_4

[27] John R. Tramm, Andrew R. Siegel, Benoit Forget, and Colin Josey. 2014. Per-
formance Analysis of a Reduced Data Movement Algorithm for Neutron Cross
Section Data in Monte Carlo Simulations. In International Conference on Exascale
Applications and Software (EASC), April 2-3, 2014, Vol. 8759. Springer, Stockholm,
Sweden, 39–56. https://doi.org/10.1007/978-3-319-15976-8_3

[28] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz. 2014.
XSBench - The Development and Verification of a Performance Abstraction
for Monte Carlo Reactor Analysis. In International Conference on Physics of
Reactors (PHYSOR), September 28 - October 3, 2014. JAEA, Kyoto, Japan, 1–12.
http://dx.doi.org/10.11484/jaea-conf-2014-003

https://www.iso.org/standard/68564.html
https://github.com/zjin-lcf/HeCBench
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-031-15922-0_2
https://doi.org/10.1007/978-3-031-15922-0_2
https://arxiv.org/abs/1601.05904
http://arxiv.org/abs/1601.05904
https://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.1007/978-3-031-07312-0_16
https://registry.khronos.org/OpenGL/specs/gl/glspec46.core.pdf
https://doi.org/10.1145/3582514.3582519
https://doi.org/10.1007/978-3-540-89740-8_2
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/vulkan/specs/1.3-extensions/pdf/vkspec.pdf
https://registry.khronos.org/vulkan/specs/1.3-extensions/pdf/vkspec.pdf
https://doi.org/10.1007/978-3-030-85262-7_11
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1007/978-3-030-95953-1_4
https://doi.org/10.1007/978-3-319-15976-8_3
http://dx.doi.org/10.11484/jaea-conf-2014-003

	Abstract
	1 Introduction
	2 Background
	2.1 Kernel
	2.2 Global Symbol
	2.3 Kernel Launch
	2.4 Dependence and Stream
	2.5 Memory Hierarchy
	2.6 Data Mapping
	2.7 Synchronization
	2.8 Workload Distribution

	3 Extension Design
	3.1 ompx_bare Clause
	3.2 Multi-Dimensional Grid and Block
	3.3 Device API
	3.4 Host API
	3.5 depend Clause
	3.6 Interoperability with Vendor Libraries

	4 Evaluation
	4.1 Methodology
	4.2 Experiment Results

	5 Related Works
	6 Conclusion and Future Work
	Acknowledgments
	References

