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Abstract—Heterogeneous supercomputing systems are becom-
ing the mainstream thanks to their powerful accelerators.
However, the accelerators’ special memory model and APIs
increase the development complexity, and calls for innovative
programming model designs. To address this issue, OpenMP has
added target offloading for portable accelerator programming,
and MPI allows transparent send-receive of accelerator memory
buffers. Meanwhile, Partitioned Global Address Space (PGAS)
languages like OpenSHMEM are falling behind for heterogeneous
computing because their special memory models pose additional
challenges.

We propose language and runtime interoperability extensions
for both OpenMP and OpenSHMEM to enable portable remote
access on GPU buffers, with minimal amount of code changes.
Our modified runtime systems work in coordination to manage
accelerator memory, eliminating the need for staging commu-
nication buffers. Comparing to the standard implementation,
our extensions attain 6x point-to-point latency improvement,
1.3x better collective operation latency, 4.9x random access
throughput, and up to 12.5% better performance in strong
scaling configurations.

Index Terms—Heterogeneous Computing, LLVM, OpenMP,
UCX, OpenSHMEM, Hybrid Programming

I. INTRODUCTION

Accelerators like GPUs are extremely popular in modern su-
percomputers, due to their high computational throughput and
excellent power efficiency. As of June 2022, nine out of the
ten fastest supercomputers on the TOP500 list use accelerators
as their main source of FLOPS [1]]. For example, over 96%
of the computing power of the Summit supercomputer at the
Oak Ridge National Laboratories comes from the six NVIDIA
V100 GPUs installed on each node, while the CPU’s job is
mainly to provide enough work to keep the GPUs occupied
during application execution.

On the software side, porting old applications to, as well
as writing new applications for the accelerators, proves to
be challenging. Firstly, we already have accelerators from
two different vendors (NVIDIA, AMD) running on production
systems, with a third vendor (Intel) appearing on the horizon.
Each of the three vendors uses their own programming model
and compilation toolchain (CUDA, ROCm, oneAPI) for ap-
plication development. These vendor-specific solutions have
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Fig. 1. Two different ways to perform inter-node GPU-to-GPU data transfers.
NIC stands for network interface controller. The data flow diagram on top
demonstrates the need for CPU staging communication buffer if the hardware
and/or the software does not support remote direct GPU memory access. The
bottom diagram shows that the extra memory copies can be eliminated with
direct GPU-GPU transfers. The CPUs only need to submit read/write requests
to the NICs in the second case (the dotted lines).

made writing performance portable HPC applications more
challenging for the developers. Additionally, the accelerators’
memory is physically disjoint from the main memory of
the compute node. This requires not only host-accelerator
data transfers, but also staging communication buffers in
the main memory if the inter-process communication model
lacks support for the accelerator and therefore cannot access
its memory directly, as demonstrated in Although
vendors provide memory coherence mechanisms like CUDA
unified memory to simplify accelerator memory management,
the performance loss is non-trivial [2].

To address these issues, community-driven parallel pro-
gramming models have been working with vendors to add
support for accelerators. For portable on-node parallelism,
the OpenMP [3] programming model is among one of the
most popular choices. Continuing its compiler directives-
based approach to parallelize loops on the CPU, OpenMP has
added device offloading support for executing annotated loops
on the accelerators. By abstracting away low-level vendor-



specific details and providing a unified high-level interface,
users can harness the computing power of HPC accelerators
using the same code base, regardless of the hardware vendor.
Similarly, as the most popular distributed HPC programming
model, Message Passing Interface (MPI) [4] has also seen
continuous accelerator-related improvements since the early
days of heterogeneous supercomputing. From the application
developer’s point of view, instead of copying data back and
forth between the accelerator and dedicated communication
buffers in the main memory, passing pointers to accelerator
buffers directly to the MPI communication routines signif-
icantly simplifies application development. Under the hood,
MPI implementations can use optimizations such as pipelining
to hide host-accelerator copy latency and improve communi-
cation performance.

However, the two-sided message passing communication
paradigm is not the best fit for all classes of applications,
especially the ones that are highly dynamic and/or irregular in
nature. Partitioned Global Address Space (PGAS) program-
ming models were developed to enable low-overhead one-
sided Remote Memory Access (RMA) in HPC applications.
In PGAS programming models, each processing element (PE)
manages a portion of a globally shared memory address
space. Data objects allocated inside the local PE’s partition
of globally shared memory are accessible by remote PEs
without active participation of the local PE. Since these one-
sided communication operations are expected to progress au-
tomatically (in contrast to calling MPI_Test to progress MPI
messages), PGAS programming models are particularly suited
to implement dynamic and/or irregular algorithms like graph
analytics. OpenSHMEM [5] is one of the most successful
PGAS programming models. It is a library-based program-
ming model, providing point-to-point RMA, atomic operations
(AMO) and collective operations on data objects allocated
inside its symmetric heap. The simple and high-performance
API of OpenSHMEM has made it an attractive alternative
to MPL. In addition to dedicated implementations like OSSS-
UCX, Sandia OpenSHMEM and Cray OpenSHMEMX, Open-
MPI and MVAPICH2 also provide their own OpenSHMEM
implementation.

However, OpenSHMEM is falling behind when it comes
to HPC accelerator support. The latest OpenSHMEM specifi-
cation [6], version 1.5, still lacks functionality for accessing
accelerator memory buffers. The Symmetric Partitions [7)]
proposal is one of the earliest attempts for adding accelerator
memory support to OpenSHMEM, but it has not gain much
traction. Currently, the OpenSHMEM specification committee
is working on the Memory Spaces proposal to provide teams-
based creation/attachment of device memory buffers. It is not
finalized yet, and the implementations are not ready. As a
result, hybrid OpenSHMEM+X applications, where X is an ac-
celerator programming model, have to use the CPU symmetric
heap as a staging buffer, and perform manual host-accelerator
data transfers before and after each RMA/AMO/collective
operation.

Listing 1| shows two examples of only using specification-

float* X = shmem _malloc(M » sizeof (float));
float* U = shmem_malloc (N % sizeof (float));
float* V = shmem_malloc (N » sizeof (float));

#pragma omp target data map (tofrom:X[0:M]) \
map (from:U[0:N],V[0:N])
{
// ==== Example 1:
// *x Source PE
// Copy X to main memory
#pragma omp target update from (X[0:M])
// PUT with notification
shmem_float_put_signal (X, X, ...);

RMA PUT ====

// xx Target PE

// Wait for the PUT signal
shmem_signal_wait_until(...);

// Copy X to device memory

#pragma omp target update to(X[0:M])

// ==== Example 2: Vector Reduction ====
// Do device computation, store results in V
#pragma omp target teams distribute parallel for
for (...)
// Copy V to main memory
#pragma omp target update from(V[0:N])
// Do reduction
shmem_float_sum_to_all (U, V, ...);
// Copy U to device memory
#pragma omp target update to(U[0:N])
// Do more device computation with U
#pragma omp target teams distribute parallel for
EOE (ooo)
}

Listing 1. Examples of hybrid OpenSHMEM and OpenMP target offloading
without interoperability extensions.

conforming OpenSHMEM and OpenMP to perform a pPUT
operation and a vector sum reduction. In the first example, the
source PE must first copy the buffer from the accelerator to the
CPU symmetric heap using the omp target update from
directive. Then, the source PE writes the buffer to the sym-
metric heap of the remote PE, and sends a signal to notify
it. The remote PE will wait on the signal until the buffer
has been delivered, and then upload it to the accelerator
using another OpenMP directive. Similarly, example 2 shows
that we also have to perform manual copies before and after
collective operations. These extra copies not only increase the
development burden, but also impact application performance
negatively. More importantly, requiring active participation
from all PEs involved will break the one-sidedness of Open-
SHMEM’s communication model. For pPUT operations, the
target PE has to know in advance that there will be incoming
PUT notifications from certain PEs, and will need to check
these signal variables either periodically or will have to set
up dedicated polling threads. It is even more complicated
for the GET operation and atomic fetch/swap, for which
we will show an example in Memory coherence
mechanisms like CUDA unified memory could simplify the
development process by eliminating manual memory copies,
but the performance penalty of hidden host-accelerator data
transfers remains to be a problem.

In this work, we aim to improve the interoperability between




OpenSHMEM and accelerator programming models, with the
goal being to enable transparent remote access to accelerator
memory, while maintaining the one-sided asynchronous com-
munication semantics of OpenSHMEM. We choose to focus
on supporting the OpenMP target offloading model, as it is
the most portable solution across different accelerator vendors.
To the best of our knowledge, this is the first attempt to ex-
tend OpenSHMEM and OpenMP target offloading for writing
performance portable application running on heterogeneous
supercomputers.

In our research prototype, we choose to implement the
Symmetric Partitions proposal for its simplicity, but our in-
teroperability workflow design is flexible enough to adapt to a
different OpenSHMEM memory allocation interface. Once the
OpenSHMEM specification committee finalizes the Memory
Spaces proposal, our implementation can be ported to the new
API without much effort.

This paper makes the following contributions:

o An optimized OpenSHMEM Symmetric Partitions imple-
mentation for managing OpenMP device buffers, without
introducing vendor-specific code into the OpenSHMEM
runtime or the application.

e An OpenMP memory allocator extension for mapping
device objects that are interoperable with OpenSHMEM,
built on top of the LLVM/OpenMP runtime system.

e A novel way to connect the runtime systems of the
two programming models using our extensions, to enable
transparent one-sided remote memory access on OpenMP
mapped device objects.

« Evaluation of the proposed interoperability extensions us-
ing micro-benchmarks and mini-apps that cover the most
common communication patterns in HPC applications.

Experiments have shown that our extensions can signifi-
cantly improve the performance of OpenSHMEM+OpenMP
hybrid applications, while requiring less code. In micro-
benchmarks, our prototype implementation can attain 6x im-
provement of point-to-point latency and 1.3x improvement of
collective operation latency, compared to a standard Open-
SHMEM+OpenMP hybrid that uses CPU staging buffers. For
mini-apps using communication patterns commonly seen in
HPC applications, when compared to the standard implementa-
tion, we have obtained 4.9x higher random access throughput,
12.5% better strong scaling parallel efficiency in all-to-all
exchange, and 8% better strong scaling parallel efficiency in
nearest-neighbor exchange.

II. BACKGROUND
A. Accelerator Programming with OpenMP

OpenMP is a directive-based on-node parallel programming
model. In addition to traditional thread-based parallelism, its
target offloading model provides a convenient and flexible
mechanism to exploit the substantial computing power within
the nodes of today’s high-performance heterogeneous super-
computers [8]]. It is one of the few programming models that
will be supported on exascale systems from the United States

// A is a regular buffer in the main memory

float* A = malloc(N x sizeof (float));

// Use OpenMP runtime API to allocate device buffer
float* B = omp_target_alloc(N x sizeof(float), 0);

// Device storage for A is automatically allocated
// by the map clause
// The mapping between A’s host & device addresses
// is also created
#pragma omp target data map (tofrom:A[0:NJ)
{

// Content of A automatically copied to the GPU

// A can be used directly since OpenMP knows its
// mapping
// Use is_device_ptr to indicate that B is already
// located on the device
#pragma omp target teams distribute parallel for \
is_device_ptr (B)
for (...) {
A[i] += B[i];
}

// This prints the host address of A
printf ("$p\n", A);

// This prints the device address of A

#pragma omp target data use_device_ptr (A)

printf ("$p\n", A);

// Content of A automatically copied to the host
}

// Release the buffers
omp_target_free (B, 0);
free(A);

Listing 2. OpenMP device buffer management examples. Buffer A is managed
by the map clause, while buffer B is managed manually.

Department of Energy, Exascale Computing Project (ECP).
OpenMP introduced support for accelerators in OpenMP
4.0 via its target constructs, extended soon thereafter in
OpenMP 4.5, e.g., to allow asynchronous execution of target
regions [9]]. Because of its performance portability and the
relatively smooth transition from its (naturally grown) thread-
parallel model into the target offloading realm [10], many ECP
application proposals include OpenMP as part of their strategy
for reaching exascale levels of performance.

In the OpenMP device offloading model, when a target
region is encountered, the host runtime automatically allocates
device memory for the list of mapped variables, using vendor-
specific API such as cuMemAlloc for NVIDIA GPUs. Ini-
tial values and computation results contained in the device
buffers will also be copied automatically, if specified by the
map (to:...) and map (from: .. .) clauses. Additionally, the
user can also choose to manage device buffers manually
using the OpenMP runtime APIs, an example is provided
in The memory management abstractions provided
by OpenMP hides low-level vendor-specific details from the
application developer and improves portability.

In the many open-source and proprietary OpenMP compiler
implementations, LLVM/OpenMP stands out in terms of both
quality and completeness. Offloading backends for NVIDIA




and AMD GPUs are ready for use, while support for Intel
GPUs is being worked on. Therefore, LLVM/OpenMP has
seen great adoption in both production runs and research
activities.

B. Distributed Programming with OpenSHMEM

OpenSHMEM is a library-based partitioned global address
space (PGAS) programming model that allows inter-process
data exchange in shared and distributed memory machines.
OpenSHMEM provides blocking and non-blocking point-to-
point one-sided communication like PUT, GET and atomic
operations, as well as collective operations like reductions and
all-to-all exchange. Since communication and synchronization
are decoupled, the asynchronous one-sided communication
model of OpenSHMEM has made it a better fit for imple-
menting dynamic and/or irregular algorithms, as it requires no
active participation from the target process of a communication
operation. However, regular objects that are allocated on the
stack or heap are not accessible by remote processes. Users
of OpenSHMEM should use its memory management routine
to allocate buffers (in a collective fashion) on its symmetric
heap to obtain symmetric data objects, and only these objects
are remotely accessible.

OpenSHMEM has attracted users from both academia and
industry, and continues to add new features. But as of Open-
SHMEM specification version 1.5, it is still focused on CPU
programming, without standardized support for heterogeneous
accelerators.

C. Interoperability Issues of Hybrid OpenMP and OpenSH-
MEM

OpenMP and OpenSHMEM were not designed with each
other in mind, and this has created issues for users that want
to write hybrid applications. Although GPU vendors have
developed drivers that allow the network card to access GPU
memory directly (e.g. GPUDirect RDMA [11]), we cannot
take advantage of them in hybrid OpenSHMEM+OpenMP
applications, as OpenSHMEM controls the network stack but
does not yet provide the necessary abstractions for GPU
communications. In the current state, the users have to set
up staging OpenSHMEM communication buffers in the main
memory, and perform expensive manual data copies before
and after the communication operations (example in
[ing T). Also, while OpenMP has greatly simplified accelerator
programming by hiding low-level details (device contexts,
execution streams, event notifications, etc.) from the users, it
assumes full control of device memory management. When
mixing OpenMP with OpenSHMEM, which will also act as
a memory allocator once GPU support is added, it is unclear
who should yield the control. This lack of interoperability con-
siderations leads to increased development cost, and decreased
application performance.

III. DESIGN AND IMPLEMENTATION

In this section, we will talk about the design and implemen-
tation of our interoperability extensions to both OpenSHMEM

// Environment variable for defining symmetric

// partitions

SHMEM_SYMMETRIC_PARTITION<ID>=SIZE=<size>
[:PGSIZE]=<pgsize>]
[ : KIND=<kind>]
[:policy=<policy>]

// Symmetric partition memory allocation routine
void* shmem_partition_malloc(size_t size, int id)

Listing 3. The OpenSHMEM symmetric memory partitions extension.

and OpenMP, as well as how they interact with each other. The
term “accelerator” and “device” are used interchangeably in
this paper.

A. OpenMP-Aware OpenSHMEM Extensions

To support heterogeneous computing, we would like to ex-
tend OpenSHMEM'’s symmetric heaps for accelerator memory.
Previously, an attachment-based solution was proposed to add
GPU symmetric heaps to OpenSHMEM [|12]. The idea is as
follows: the user allocates device buffers with vendor API
like cudaMalloc (), the returned address ranges are then
registered with the OpenSHMEM runtime using the special
shmemx_attach () API extension, and host-device data trans-
fers should continue to use the cudaMemcpy () routine. While
this is sufficient for hybrid OpenSHMEM+CUDA applications
due to how low-level CUDA is, it does not work well with
OpenMP device offloading.

To reduce the effort for porting CPU-only applications to
run on GPUs, OpenMP encourages the use of the map clause,
which specifies how an original memory buffer is mapped
from the current data environment to a corresponding buffer
in the device data environment. The OpenMP runtime library
will allocate/free/copy device memory buffers based on the
map type without the extra effort from application developers.
By delegating device memory management to OpenMP, the
code base will be simplified, and the application can enjoy
compiler-assisted data movement optimizations.

On the other hand, the per-buffer attachment approach
forces the users to go back to manual device memory man-
agement and data transfers, thus negating one of the most
important benefits of using OpenMP for device computation.
Additionally, since these buffers are not allocated using the
map clause, OpenMP does not know about them and all
OpenMP target regions that access these buffers must be
marked with an additional is_device_ptr clause[ﬂ As the
result, the attachment-based solution leads to unnecessarily
complicated code and prevents OpenMP-specific compiler
optimizations.

A better approach would be to allow the OpenMP runtime
to use OpenSHMEM as its internal device memory pool,
so that the application can continue to use the map clause
and transparently enable RMA for mapped device buffers.
This approach requires minimal changes to both program-
ming models because OpenSHMEM'’s global address space

't indicates that those buffer pointers are device pointers.
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Fig. 2. Flow of memory address information in the proposed interoperability
extensions. First, the OpenMP runtime allocates a large chunk of device
memory using vendor APIL Then, the address space is passed to OpenSHMEM
to create a device memory pool and enable remote memory access. Finally, the
OpenMP runtime uses OpenSHMEM to manage device computation buffers.

is already presented as a memory pool, it only needs a fixed
memory address range [start, end] to perform allocations.
Therefore, we can reserve a large chunk of device memory
using OpenMP, pass its address range to OpenSHMEM during
initialization, and let OpenMP allocate device buffers from
this reserved space using OpenSHMEM memory management
routines. A simplified diagram of this process is provided
in

Therefore, we choose to implement a simplified version of
the OpenSHMEM Symmetric Partitions extension proposed by
Cray [[7]. Instead of a single CPU symmetric heap controlled
by the SHMEM_SYMMETRIC_SIZE environment variable, this
extension allows OpenSHMEM to split the symmetric heap
into multiple partitions, with their locations and sizes con-
trolled by a series of environment variables shown in
Multiple symmetric partitions can be created during
shmem_init by defining environment variables with different
1D and S1zE. Additionally, the optional KIND trait specifies
the kind of memory used by the partition. Dependent on what
is supported by the implementation, this can be set to non-
volatile memory, high-bandwidth memory, and GPU memory
of a specific vendor.

We have implemented the symmetric partitions extension
on top of the reference OpenSHMEM  implementation,
OSSS-UCX [13]], with support for memory kind LIBOMP
to interoperate with the LLVM/OpenMP device offloading
runtime. For example, if the user defines environment
variables SHMEM_SYMMETRIC_PARTITIONO=8G and
SHMEM_SYMMETRIC_PARTITION1=2G:KIND=LIBOMP,
OSSS-UCX will create an 8 GiB symmetric partition in main
memory, and a 2 GiB symmetric partition in device memory.

During initialization, the OpenSHMEM runtime parses its
environment variables, and allocates a device buffer using the
omp_target_alloc routin The runtime then registers the
device buffer with the UCX communication framework [14]],
so that they are considered “pinned” by the network card driver
and allow Remote Direct Memory Access (RDMA). Since

2It allocates memory in a device data environment and returns a device
pointer to that memory.

UCX has done the heavy lifting of identifying the vendor
of the accelerator and setting it up for RDMA, we do not
need to introduce vendor-specific code into the OpenSHMEM
runtime. For the actual communication, we can continue to use
standard OpenSHMEM communication routines, as Unified
Virtual Addressing (UVA) guarantees that the address spaces
of the main memory and the accelerator do not overlap.
Therefore, when a communication routine is invoked with a
pointer pointing into a device symmetric partition, we will
calculate which symmetric partition this pointer points to,
and select the correct UCX remote key (rkey) to perform the
communication operation.

While UCX handles PUTs, GETs and atomic operations
required by the OpenSHMEM specification, we still need to
make sure that collective operations work on device symmetric
partitions. For operations that do not modify the values of
the operands (broadcast, collect, all-to-all), implementations
for CPU buffers will continue to work, as long as all lo-
cal and remote access to the accelerator buffers are done
through OpenSHMEM RMA communication routines. For
reductions, we use the Unified Communication Collectives
Library (UCC) [15], which automatically launch kernels to
handle the computational parts of reduction operation.

One additional challenge is that the OpenSHMEM runtime
needs to have an accelerator memory pool that does not
access the managed buffer, so that we can avoid introducing
vendor-specific code into the runtime. Also, since the OpenMP
application could require multiple small allocations for each
target region execution (e.g. for variables that store reduction
results), it is crucial to have a high-performance memory
manager. In our work, we have implemented a memory pool
using the Buddy memory allocation algorithm [16]], which
stores allocation records outside the pool and is extremely
efficient (around 40 nanoseconds per allocation).

With the symmetric memory partitions extension, OpenSH-
MEM can create accelerator buffers that are accessible by
regular communication routines, and is ready to be used as
the internal memory allocator of the LLVM/OpenMP device
offloading runtime. Our design is completely vendor-agnostic
and only requires setting a few environment variables.

B. OpenSHMEM-Aware OpenMP Extensions

By default, storage for variables listed in OpenMP’s map
clause are allocated by the LLVM/OpenMP host runtime,
which wraps the memory management routines provided by
the accelerator’s vendor. Starting from version 5.0, OpenMP
added support for specifying the type of memory alloca-
tor for the target construct using the allocator and
uses_allocators clauses. The OpenMP specification has
provided a list of predefined memory spaces (constant, high-
bandwidth, low-latency, etc.), and a corresponding list of
memory allocators.

To support using OpenSHMEM as an OpenMP device
memory allocator, we extend the allocator related clauses
to be used on target data regions. We also introduce an
omp_shmem_mem_space memory space extension, as well



// Register OpenSHMEM API, create the allocator
__tgt_set_shmem_allocator (shmem_partition_malloc,
shmem_partition_free,
0);
omp_memspace_handle_t shmems = omp_shmem_mem_space;
omp_allocator_handle_t shmema = ...;

auto X = new float[M] ();
auto U = new float[N] ();
auto V = new float[N] ();

#pragma omp target data map (tofrom:X[0:M]) \
map (from:U[0:N],V[0:N]) \
uses_allocators (shmema) \
allocator (shmema:X, U, V)

// ==== Example 1: RMA PUT ====

// %% Source PE only

// Pass device pointer of X to OpenSHMEM
#pragma omp target data use_device_ptr (X)
shmem_float_put (X, X, ...);

// ==== Example 2: Vector Reduction ====
// Do device computation, store results in V
#pragma omp target teams distribute parallel for
for (...)
// Use device addresses of U & V for reduction
#pragma omp target data use_device_ptr (U,V)
shmem_float_sum_to_all (U, V, ...);
// Do more device computation with U
#pragma omp target teams distribute parallel for
for (...)

}

Listing 4. Hybrid OpenSHMEM and OpenMP device offloading example,
with interoperability extensions.

as its corresponding allocator omp_shmem_mem_alloc. This
allows all target data regions annotated by the OpenSH-
MEM allocator to use OpenSHMEM to allocate storage for
its mapped variables, thus enabling remote access for device
objects. Hybrid programming examples shown in is
modified to use our interoperability extensions in
The use of staging communication buffers has been removed
since now OpenSHMEM is capable of handling device buffers.
Note that we cannot pass the variables X, U and v directly
to OpenSHMEM, as their values still point to locations in
the main memory. Instead, the use_device_ptr claus is
used to instruct the compiler to pass the corresponding device
addresses to OpenSHMEM. This is a compile-time decision
and therefore do not incur any run-time overhead.

Since OpenMP target allocators are still in the early stage
of adoption, the compiler infrastructure for implementing our
extensions is incomplete. Therefore, in our LLVM/OpenMP
based prototype, all OpenMP mapped variables are allocated
using our extended OpenSHMEM allocator.

C. Hybrid OpenSHMEM and OpenMP Workflow

The run-time interactions between the hybrid application,
the LLVM/OpenMP runtime and the OSSS-UCX OpenSH-
MEM runtime are depicted in The detailed descrip-
tion of the four steps are as follows:

31t indicates that each list item is a pointer to an object that has correspond-
ing storage on the device or is accessible on the device.

1) When the application starts its execution, the offloading-
related code inside __libc_start_main will initialize
the device runtime for all the accelerators (creating
device contexts, streams, etc.).

2) When shmem_init is invoked, the OpenSHMEM run-
time will parse the environment variables that define
symmetric partitions, call omp_target_alloc to allo-
cate symmetric partitions with the specified sizes on the
accelerators, and register the base pointers (OSSS-UCX
memory pool, UCX mapped memory), so that the device
symmetric partitions are RDMA-ready.

3) Once we encounter an OpenMP target data mapping
clause that requests OpenSHMEM symmetric parti-
tion memory, the LLVM/OpenMP runtime calls the
registered shmem_partition_malloc routine, which
returns a pointer to accelerator memory that can be
accessed using the vendor memcpy routines and also
from inside kernels.

4) When an OpenSHMEM communication routine like
shmem_putmem is called with a pointer pointing into
a device symmetric partition, OSSS-UCX will perform
address range calculation, get the corresponding UCX
remote key, and perform the communication operation.

Through our interoperability extensions to OpenSHMEM
and OpenMP, runtime systems of the two programming models
work seamlessly together to provide low-latency one-sided
remote access to OpenMP mapped device buffers, with mini-
mum efforts from the application developer.

1V. EVALUATION
A. Experimental Setup

To evaluate the effectiveness of our interoperability exten-
sions (referred to as “Extended OpenSHMEM”), we ran a
series of benchmarks with different communication patterns
on the Summit supercomputer at the Oak Ridge National
Laboratories, and compare the results with unmodified Open-
SHMEM+OpenMP (referred to as “Standard OpenSHMEM”)
and MPI+OpenMP running on the same setup. Each Summit
node is equipped with a total of 42 IBM POWER 9 CPU cores
in two sockets, 6 NVIDIA V100 GPUs connected to each other
through NVLink, and a Mellanox ConnectX-5 EDR 100Gb/s
network card connected to a fat-tree network.

For software, we use RHEL 8.2, GCC 8.5.0, CUDA 11.0.3,
MLNX_OFED 4.9, GDRCopy 2.0, UCX v1.12.x commit
dc92435, UCC commit cd393e4. Our modified OSSS-UCX
is based on upstream commit 3f565e0, and our modified
LLVM is based on upstream commit d2792e7. Additionally,
we use IBM Spectrum MPI 10.4.0 to serve as a vendor-
optimized MPI performance reference. Note that instead of
UCX, Spectrum MPI uses the Parallel Active Messaging In-
terface (PAMI) as its communication backend, so the observed
performance differences could also be affected by the differ-
ences in the communication middlewares. All benchmarks are
compiled with our modified LLVM installation to keep GPU
kernel performance the same.
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Fig. 3. Hybrid OpenSHMEM and OpenMP device offloading workflow, with interoperability extensions.

Point-to-point and collective micro-benchmarks are first
used to demonstrate the basic overhead reduction capability
of our extensions. Then, four mini-apps are used to evaluate
the performance improvements of our extensions for appli-
cations that have different communication patterns. The four
mini-apps and the corresponding communication patterns are:
Random Access for random reads and writes, Fast Fourier
Transform for all-to-all, matrix multiplication for ring ex-
change, and 3D heat equation for nearest-neighbor exchange.
These communication patterns cover a wide variety of HPC
applications: stencil PDE, N-body, particle methods, dense
linear algebra, and graph analytics. We wrote all the mini-apps
from scratch with reasonable amounts of optimizations (e.g.
communication-computation overlap), while keeping them as
close to each other as possible. In all our benchmarks, we use
one GPU per PE/rank, which is the standard practice to avoid
dealing with the complexity of handling multiple GPUs and/or
NUMA nodes in a single process.

B. Inter-Node Micro-benchmarks

We first present the latency numbers of communicating
between a pair of GPUs located on two different nodes using
shmem_put. Spectrum MPI CUDA send-receive latencies are
also added as a reference. Results for inter-node CPU-GPU
transfers are very similar and therefore omitted.

Results in show that for small messages, Open-
SHMEM communication latency between two remote GPUs
is 6 times faster with our interoperability extensions. The
advantage decreases as message size increases, since the
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Fig. 4. Inter-node point-to-point communication latency between two GPUs.
Lower is better.

benchmark becomes more and more bandwidth-bound. But
even for messages larger than 64 MiB, the Extended Open-
SHMEM version is still at least 1.3 times faster than the
Standard OpenSHMEM version. This shows that removing the
need for manual CPU-GPU transfers through interoperability
extensions yields significant performance benefits for hybrid
OpenSHMEM + OpenMP offloading.

Additionally, we benchmarked the all-to-all exchange op-
eration on 8 nodes (48 GPUs) to demonstrate the benefits of
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Fig. 5. All-to-all communication latency between 48 GPUs. Lower is better.

our extensions for collective operations. In all-to-all exchange,
every process send a message of a given length to every
other process. It is one of the most communication-intensive
collective operations, and is commonly used to do Fast Fourier
Transformation (FFT) or matrix transposition.

Similarly, all-to-all latency results in shows that the
extended version is 2.6 times faster than the standard version
for small messages, and is 1.4 times faster for large messages.

C. HPC Challenge Random Access (GUPs)

For mini-apps, we start with the HPC Challenge Random
Access benchmark, which profiles the memory architecture
of a system using random accesses. It measures the perfor-
mance of random 64-bit read-modify-write with the unit of
Giga updates per second (GUPs). For pure-CPU execution,
this benchmark favors PGAS models since their simple one-
sided GET-modify-PUT implementations adapts well with
the randomness of the accesses, while MPI implementations
require careful optimization and tuning for the send-receive
mechanism to achieve good performance.

For GPU executions, the one-sided GETs initiated by
the CPU cannot reach the GPU memory of the target PE,
breaking the simple GET-modify-PUT implementation. For
the Standard OpenSHMEM version of the mini-app, we have
simulated GPU GETs using put-with-signal and an additional
polling thread. The simplified code of the Standard Open-
SHMEM version, as well as the Extended OpenSHMEM
version, are shown in As we can see, the Standard
OpenSHMEM version is quite complicated, and consumes an
extra CPU core to handle incoming “GET” requests.

The weak scaling results of the GUPs benchmark are
presented in In the evaluation, each PE/rank perform
221 updates to remote GPUs, while we increase the number of
GPUs from 2 to 128. Note that the data updates are performed
on the CPU, so all remote data transfers are inter-node CPU-
GPU. The results show that both OpenSHMEM implemen-
tations of the mini-app have good weak scalability, but our
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Fig. 6. HPC Challenge Random Access throughput in weak scaling config-
urations. Higher is better.

interoperability extensions improved the performance by up to
4.9 times. MPI’s two-sided send-receive implementation does
not scale well for random accesses.

D. Fast Fourier Transform

The next mini-app calculates the Fast Fourier Transform
(FFT) of a 2D function stored in a square matrix. FFT is
the core algorithm of many important HPC applications, such
as molecular dynamics and spectral methods. In terms of
communication pattern, FFT stresses the all-to-all capability of
the system. Initially, the matrix is partitioned into block stripes
of the same size and distributed to the participating GPUs.
Then, all GPUs perform 1D FFT in one direction, transpose
the matrix, and perform 1D FFT in that same direction. The
matrix transposition is implemented in an all-to-all exchange
and is not overlapped with the computation.

// Standard SHMEM read-modify-write initiator
shmem_atomic_set (...); // Send "Ready to GET"
while (sig_s) {}; // Wait for "Data PUT"
foo(...); // Modify

shmem_put_signal(...); // Send "Data updated"

// Standard SHMEM read-modify-write polling thread

terminate (sig_t); // Check for termination
check (sig_g, PE); // Check for "Ready to GET"
#pragma omp target update from(...) // Read from GPU
shmem_put_signal(...); // Send "Data PUT"

check (sig_u, PE); // Wait for "Data updated"

#pragma omp target update to(...) // Write to GPU

// Extended SHMEM read-modify-write
#pragma omp target data use_device_ptr (table)

{

auto v = shmem_uint64_g(...); // Read
v = foo (v); // Modify
shmem_uint64_p(...); // Write

}

Listing 5. Simplified HPC Challenge Random Access implementations,

Standard SHMEM v.s. Extended SHMEM.
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The strong scaling results of performing FFT on a 4096 x
4096 complex matrix on 2 to 128 GPUs are presented in
All three versions of the mini-app does not scale well,
as the communication-intensive all-to-all exchange does not
scale well, even with IBM’s optimized implementation in
Spectrum MPI. However, the Extended OpenSHMEM version
still consistently beats the other two versions, by up to 12.5%.

E. Matrix Multiplication

We then test the ring exchange communication pattern
using a mini-app that implements the Cannon’s algorithm to
calculate square matrix multiplication product C' = A x B.
All three versions of the mini-app use an extra block stripe
for matrix B so that computation and communication can be
overlapped. The Standard OpenSHMEM version must perform
manual CPU-GPU transfers before and after the exchange of
the block stripes. These transfers happen serially and are not
overlapped with the computation.
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Fig. 9. Strong scaling parallel efficiency of 3D heat equation solving. Higher
is better.

shows the strong scaling results of multiplying two
302402 matrices together using 6 to 60 GPUs. Ring exchange

is the simplest communication pattern when compared to the
other three patterns, as every PE/rank only communications
with its left and right neighbor in each iteration. Therefore, the
differences between the three versions are not significant, with
the Extended OpenSHMEM version having around 1% higher
scaling efficiency. The super-linear scaling of the mini-apps is
caused by improved cache utilization when the matrices are
partitioned amongst increasing numbers of GPUs.

F. 3D Heat Equation

Finally, we evaluate our interoperability extensions using a
mini-app that solves the heat equation on a 3D domain to see
how it performs under the nearest-neighbor communication
pattern. The mini-app uses spatial discretization and a 7-
point finite difference scheme to calculate the propagation
of heat in a solid square block of material. The grid is
partitioned evenly between all participating compute units, and
the neighboring compute units will have grid points on the
boundaries duplicated (halo regions), to correctly handle the
data dependencies created by the 7-point stencil. Since we use
the periodic boundary condition, each compute unit will have
exactly six neighbors that it needs to perform halo exchange
with.

In all three versions of the mini-app, we use non-blocking
communication routines to exchange the halo regions, so that
the communication can overlap with the computation of the
inner grid points. Again, the Standard OpenSHMEM version
requires extra steps to copy halo regions between the CPU and
the GPU, which cannot be overlapped with computation and
will result in negative performance impacts.

shows the strong scaling efficiency of all three
versions of the mini-app, solving a 12603 simulation grid for
10000 time steps. Results are normalized to the execution
time of the mini-app on 6 GPUs. As we can see, the version
of the mini-app that uses our interoperability extensions con-



sistently beats the Standard OpenSHMEM version, attaining
an 8% higher strong scalability on 60 GPUs. The super-
linear scaling that appeared for 24 and 30 GPUs is caused by
communication-optimal X-Y-Z partitioning and ranking of the
simulation grids among the GPUs. The MPI version has worse
scalability, possibly due to the lack of effective communication
progression for CUDA buffers (no overlap).

V. RELATED WORK

Researchers have been working on extending pro-
gramming models for heterogeneous computing since the
dawn of general-purpose computing on graphics processing
(GPGPU). For MPI, MVAPICH-GDR [17], OpenMPI [18]] and
MPICH [19] are the most well-known open source implemen-
tations that have support for direct communication on GPU
buffers. Vendor implementations like Cray MPICH and IBM
Spectrum MPI support GPUs as well. Unfortunately, although
MPI-3 has introduced one-sided communication similar to the
PGAS languages, the majority of the implementations above
do not support one-sided access to GPU buffers.

OpenMP is primarily designed to handle on-node paral-
lelism, but efforts [20] were still made to extend its device
offloading model to program remote GPUs. This approach
has better programmability than hybrid solutions, but is facing
scalability challenges stemming from the limitations of the
OpenMP specification.

For the PGAS family of programming languages, Open-
SHMEM has received the most attention for interoperability
improvements. The MVAPICH team has worked on CUDA-
aware OpenSHMEM and has obtained good results [12]
[21]] [22]. Their GPU attach-based OpenSHMEM extension
requires the user to manually attach each GPU buffer that
needs remote access, and is limited to CUDA devices. GPU
vendors are also putting efforts to develop their OpenSHMEM-
like programming models. Both NVSHMEM [23] [24] and
ROCM_SHMEM [25]] enable GPU-initiated communications
that have very low overheads. However, their solutions are not
portable to other vendors’ accelerators. Other attempts [26]
[27] [28] to improve OpenSHMEM+X, with X being CU-
DA/OpenMP/OpenACC, were either focusing on traditional
thread-based parallelism, or did not enable RDMA for GPU
and had to use staging buffers. Other PGAS languages that
have support for heterogeneous computing include X10 [29]]
and UPC++ [30].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the design and implemen-
tation of a set of interoperability extensions for OpenSHMEM
and OpenMP device offloading to support transparent remote
access of GPU device memory. Using our extended runtime
systems, developers of hybrid OpenSHMEM+OpenMP ap-
plications only need a minimum amount of vendor-agnostic
code to enable point-to-point and collective operations be-
tween GPUs, eliminating the need for staging communication
buffers. Additionally, our design reuses existing work done by
LLVM and UCX for interacting with vendor-specific APIs,

this simplifies the OpenSHMEM runtime design and increases
portability. Through these interoperability improvements, our
extensions make OpenSHMEM better for programming het-
erogeneous supercomputers, which have become mainstream
in the exascale era. In experiments, we observe significant
speedups over standard OpenSHMEM+OpenMP implementa-
tions: 6 times better point-to-point latency, 1.3 times faster col-
lective operations, 4.9 times higher random access throughput,
12.5% better strong scalability in FFT, and finally 8% better
strong scalability in solving 3D heat equations.

For future work, we can improve our OpenMP device
offloading extension, so that the users can selectively en-
able RDMA for accelerator communication buffers, and let
OpenMP use vendor memory management API for other
mapped buffers. Also, we can evaluate our work on AMD
Instinct GPUs and Intel Xe GPUs with real-world HPC
applications to provide a stronger argument for its performance
portability across different vendors, and fix bugs and issues we
encounter in the porting process. Finally, we could push for
tighter integration between OpenSHMEM and OpenMP, by
letting LLVM/Clang recognize OpenSHMEM communication
routines, and replace remote device-to-device transfers with
NVSHMEM or ROC_SHMEM calls. By switching from CPU-
initiated communications to GPU-initiated communications,
we could get even lower latencies, which should lead to even
better strong scalability in applications.
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