
DynaSpa: Exploiting Spatial Sparsity for Efficient Dynamic DNN
Inference on Devices

Renyuan Liu
George Mason University

Fairfax, VA, USA
rliu23@gmu.edu

Yuyang Leng
George Mason University

Fairfax, VA, USA
yleng2@gmu.edu

Shilei Tian
Stony Brook University
Stony Brook, NY, USA

shilei.tian@stonybrook.edu

Shaohan Hu
Global Technology Applied Research,

JPMorganChase
New York, NY, USA

shaohan.hu@jpmchase.com

Chun-Fu (Richard) Chen
Global Technology Applied Research,

JPMorganChase
New York, NY, USA

richard.cf.chen@jpmchase.com

Shuochao Yao
George Mason University

Fairfax, VA, USA
shuochao@gmu.edu

Abstract
Recent advancements in exploring machine learning models’ dy-
namic spatial sparsity have demonstrated great potential for su-
perior efficiency and adaptability without compromising accuracy
when compared to conventional static-and-dense DNNs. However,
realizing theoretical inference acceleration under practical deploy-
ment environments is still faced with significant system challenges.
Current vendor libraries and tensor compilers fall short due to their
extra data copy operations or insufficient computation schemes,
especially for DNN operators with dynamic spatial sparsity.

To bridge this gap, we propose DynaSpa, an automated kernel
generation framework that enables efficient on-device inference
for DNNs with dynamic spatial sparsity across diverse comput-
ing platforms. DynaSpa jointly optimizes computation and sparse
patterns, while also leveraging the underlying hardware character-
istics. DynaSpa consistently outperforms state-of-the-art vendor
libraries and tensor compilers on embedded and mobile GPUs. For
DNN operators with spatial sparsity ratio between 50% ∼ 90%,
DynaSpa achieves a speedup of ×1.3 ∼ ×4.4 for Jetson AGX Orin
GPU, ×1.6 ∼ ×7.7 for Jetson AGX Xavier GPU, and ×1.5 ∼ ×7.8
for Adreno mobile GPU, when compared to their respective dense
counterparts.

CCS Concepts
• Computing methodologies→Machine learning; • Software
and its engineering→ Dynamic compilers.

Keywords
Mobile computing, Dynamic sparsity
ACM Reference Format:
Renyuan Liu, Yuyang Leng, Shilei Tian, Shaohan Hu, Chun-Fu (Richard)
Chen, and Shuochao Yao. 2024. DynaSpa: Exploiting Spatial Sparsity for Effi-
cient Dynamic DNN Inference on Devices. In ACM Conference on Embedded

SenSys ’24, November 4–7, 2024, Hangzhou, China
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0697-4/24/11.
https://doi.org/10.1145/3666025.3699348

Networked Sensor Systems (SenSys ’24), November 4–7, 2024, Hangzhou, China.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3666025.3699348

1 Introduction
Deep Neural Networks (DNNs) are crucial in applications like au-
tonomous driving, augmented and mixed reality, and video ana-
lytics. With rising concerns about latency and privacy, there is a
growing need to deploy task-specific networks on mobile, embed-
ded, and edge devices [1–3]. Researchers have extensively studied
ways to accelerate inference while maintaining output quality [1–
10]. Modifying DNN models to suit resource-limited devices has
proven effective [4, 8, 10–14].

Dynamic neural networks [15–23] achieve inference accelera-
tion by adjusting the model based on input, reducing computational
requirements, especially in the number of arithmetic operations.
Leveraging spatial sparsity has become a popular dynamic tech-
nique used in various model architectures, ranging from convo-
lutional neural networks [15–17] to transformer models [18–20].
These networks focus computation on selected data areas, ignoring
the rest. This approach has led to significant theoretical computa-
tion reduction in tasks like classification, detection [15–21], and
generative AI workloads like image generation [22, 23], making it
a promising solution for on-device inference.

Unfortunately, it remains challenging to achieve practical in-
ference speedups on mobile and embedded GPUs because merely
reducing the arithmetic operations in DNN models does not in-
herently assure a practical acceleration. Dynamic neural networks
introduce a huge amount of sparse tensor computation, which
becomes a new performance bottleneck. Existing sparse tensor li-
braries, such as cuSparse [24], Sputnik [25], and Intel MKL [26],
outperform their dense counterparts only when the sparsity ra-
tio exceeds 90% [24, 25]. However, dynamic DNNs typically have
moderate sparsity levels (50%-90%), which are insufficient for these
sparse kernels to be more efficient than dense ones. A particularly
time-consuming step in these libraries is the copying of non-zero
values to the global memory before computation, a process that
significantly hampers efficiency.

To overcome the aforementioned limitations of the existing
methods, we propose DynaSpa, a novel sparse tensor computa-
tion framework designed to enable the practical acceleration of
tensor programs with spatial sparsity on resource-limited devices.

422

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3666025.3699348
https://doi.org/10.1145/3666025.3699348
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3666025.3699348&domain=pdf&date_stamp=2024-11-04

SenSys ’24, November 4–7, 2024, Hangzhou, China R. Liu et al.

Parallel Computing Units

[0,1][0,0]

[1,0] [1,1]

[0,3][0,2]

[1,2] [1,3]

[2,1][2,0]

[3,0] [3,1]

[2,3][2,2]

[3,2] [3,3]

[0,4]

[1,4]

[2,4]

[3,4]

[4,0] [4,1] [4,2] [4,3] [4,4]

[0,5]

[1,5]

[2,5]

[3,5]

[4,5]

[5,0] [5,1] [5,2] [5,3] [5,4] [5,5]

Shared Memory / L1 Cache

[4,0] [4,1]

[5,0] [5,1]

[4,2] [4,3]

[5,2] [5,3]

Shared Memory / L1 Cache

[2,3][2,2]

[3,2] [3,3]

[2,4]

[3,4]

[2,5]

[3,5]

Shared Memory / L1 Cache

[0,1][0,0]

[1,0] [1,1]

[2,1][2,0]

[3,0] [3,1]

Read Relaxed

DISTiles to

Shared Memory

Write Results to

Corresponding

Place

Compute

in Parallel
Candidate

Computation Kernels

BitMask

Control

Read/Write/

Calculation

Choose the

Optimal Kernel

Input

[0,1][0,0]

[1,0] [1,1]

[2,1][2,0]

[3,0] [3,1]

[2,3][2,2]

[3,2] [3,3]

[2,4]

[3,4]

[4,0] [4,1] [4,2] [4,3]

[2,5]

[3,5]

[5,0] [5,1] [5,2] [5,3]

Output

2Activated Value

Skipped Value

Process of Inference1

3

4

51

Figure 1: DynaSpa inference example.

DynaSpa operates by first conducting an offline search to identify
a set of computation kernel candidates suited for various sparse
inputs. Then, during online inference, DynaSpa employs a bitmask
representing the input interest area to select the most appropriate
kernel from these candidates. Activated input data is loaded into
the shared memory of parallel execution units using an efficient
tiling method and processed with the most effective schedule de-
fined by the kernel. Figure 1 illustrates DynaSpa’s inference process.
To realize this process and address all the previously mentioned
challenges, we propose three composability designs.

Relaxed Sparsity Composition. To ensure optimal load balance
and effective data reuse in the computation kernel, we propose an
abstraction named Dense-In-Sparse Tile (DISTile). This approach
relaxes the constraint of eliminating all unnecessary computation.
The activated parts of the input data are composed into multiple
DISTiles, which are then evenly distributed among all GPU compu-
tational units for parallel processing.

Polyalgorithm Kernel Composition. To support dynamic sparse
DNN operators, DynaSpa leverages data-driven auto-scheduler
techniques [27, 28] to search for several kernel candidates offline,
collectively termed as polyalgorithm kernel (PolyKernel) , to cover
all the possible sparsity patterns. When given an operator with a
sparsity mask during runtime, DynaSpa uses a bitmask and bitwise
operations to select and dispatch the most suitable kernel, ensuring
both accurate computation and minimized execution time.

Analytical Cost Model Composition. While the previous compos-
ability designs enable tensor compilers to generate efficient kernels
for DNN operators with spatial sparsity, they also enlarge the search
space. To address this, DynaSpa enhances the auto-scheduler’s data-
driven cost model by integrating an analytical hardware model
designed to estimate the upper performance bound of tensor op-
erations. This model streamlines the search space by filtering out
suboptimal kernel implementations.

We evaluated DynaSpa on a wide range of tensor workloads
with spatial sparsity 50% ∼ 90% on embedded (Jetson AGX Orin
and Jetson AGX Xavier) and mobile GPUs (Adreno 650). Compared
to manually optimized dense tensor libraries (i.e., cuDNN [29] and
TFLite [30]) and tensor compilers (i.e., AutoTVM [27] and PIT [31]),
DynaSpa achieves ×1.3 ∼ ×4.4 speedup for Jetson AGX Orin GPU,
×1.6 ∼ ×7.7 speedup for Jetson AGX Xavier GPU, and ×1.5 ∼ ×7.8
speedup for Adreno mobile GPU. Compared to the sparse tensor

Non-Zero

Zero

sp
a

rs
e

co
n

v

sp
a

rs
e

co
n

v

mask
unit

mask
unit sp

a
rs

e
co

n
v

sp
a

rs
e

co
n

v

W0 W1 W2

W3 W4 W5

W6 W7 W8

W0 W1 W2

W3 W4 W5

W6 W7 W8

W0 W1 W2

W3 W4 W5

W6 W7 W8Conv2d

=

(a)

(b) (

(.
.
.

Figure 2: A dynamic DNN example. (a) Residual structure w/ spatial
mask unit [16] (b) Illustration of sparse convolution.

library, cuSparse, DynaSpa can achieve up to ×32 speedup. There
is no loss in accuracy compared to dynamic neural networks.

In summary, our paper makes the following contributions:
• It presents DynaSpa, a framework to generate compute kernels
for high-performing spatially-sparse DNNs.
• It proposes a PolyKernel auto-scheduling framework with run-
time dispatch to support dynamic sparse workloads.
• It introduces an analytical performance model for search space
reduction.
• It presents the complete implementation and comprehensive
evaluation of DynaSpa, demonstrating its superior performance
over state-of-the-art systems with a variety of spatially-sparse
DNNs on mobile/embedded GPUs.

2 Background & Motivation
In this section, we discuss the technical background of the problem
at hand and motivate our proposed solution.

2.1 Spatial Sparsity in DNNs
Spatial sparsity, also known as activation sparsity, is crucial for
enhancing DNN efficiency [15–23]. Unlike weight sparsity, com-
mon in model pruning [11, 12, 32], which is fixed post-training,
spatial sparsity is dynamic and input-dependent. Weight sparsity
allows modification of filters and can utilize existing libraries for
speedup [12, 32]. In contrast, spatial sparsity requires system sup-
port for acceleration due to its dependency on input data semantics.
Hence, this paper focuses on spatial sparsity.

There are primarily two sources of spatial sparsity in tensor
operations: 𝑖) the spatial sparsity inherited from the tensor input,
including sparse activation maps with ReLU function or from input
data [15, 33, 34] and gradual interactive editing in image genera-
tion [22, 23]; and 𝑖𝑖) the generated sparse output activation map
with a trainable tiny component [16–20]. Fortunately, we can for-
mulate both with a single format-agnostic computation description.
Without loss of generality, we take the convolution operation as an
example: 𝑌ℎ,𝑤,𝑜 = 𝑀ℎ,𝑤 ⊙𝑋𝑝,𝑞,𝑐 ⊗𝐾𝑟,𝑠,𝑐,𝑜 , where ⊙ and ⊗ represent
the element-wise product and convolution respectively; 𝑋 , 𝑌 , 𝐾 ,
𝑀 denote input, output, filters, and the spatial mask respectively,
while the subscripts indicate the tensor shape. Every element within
the spatial mask 𝑀 assumes a binary value of either 0 or 1. If 𝑀
solely comprises 1s, it defaults to a standard dense convolution op-
eration. Figure 2 (a) shows a dynamic neural network with spatial

423

DynaSpa: Exploiting Spatial Sparsity for Efficient Dynamic DNN Inference on Devices SenSys ’24, November 4–7, 2024, Hangzhou, China

Table 1: Comparison of different algorithms.

Algorithm
Aware of

Sparse Pattern
No Extra
Data Copy

Jointly Optimize
Computation and
Sparse Patterns

Runtime
Overhead

cuDNN × ✓ × Very Low
cuSparse ✓ × ✓ Very Low

PIT ✓ ✓ × High
DynaSpa ✓ ✓ ✓ Low

sparsity from DynConv [16]. Figure 2 (b) illustrates the correspond-
ing sparse convolution. Spatially sparse computations for other
operations (e.g., attention) can also be defined in a similar fashion.

2.2 Practical Gaps for Spatial Sparsity
Existing studies on spatially-sparse model designs emphasize creat-
ing trainable models with spatially-sparse operations. However,
they often neglect practical deployment considerations. Many
implementations introduce element-wise products with sparsity
masks subsequent to performing the original full-dense operations.
Therefore, no practical speedup is achieved, as illustrated in Figure 3,
where we execute all operations from a spatially-sparse DNN [16]
with existing sparse tensor libraries on embedded/mobile GPUs.

Gather-and-Scatter. The Gather-and-Scatter operation is cur-
rently the predominant implementation for spatially-sparse
DNNs [15, 16, 22]. Its core concept is both simple and intuitive.
Based on the spatial mask, the gather function extracts each
input tensor patch and concatenates them into a batched ten-
sor. Next, it carries out the original operation (e.g., Conv2d and
MultiheadAttention). Finally, the scatter function, which acts
as the inverse of the gather operation, places the computed re-
sult back to its respective index in the output tensor. While the
Gather-and-Scatter approach is easy to implement, it often leads to
undesired memory access patterns, poor cache locality, and long
kernel launch time, especially when the three steps are not jointly
optimized manually or automatically.

Vendor Library & Tensor Compiler. The vendor library for NVIDIA
GPUs, i.e., cuSparse [24], can support spatial sparsity but with a
particular focus on high-degree sparsity. Furthermore, the majority
of sparsity optimizations from vendor libraries (e.g., cuSparse [24]
and TFLite [30]) focus on static weight sparsity, which is hardly
applicable to spatially-sparse operators. Sparse tensor compilers,
such as TACO [35, 36], decouple sparse format specification and
computation descriptions. SparseTIR [37] advances this concept
by supporting multiple composable formats. SparTA [38] proposes
sparse annotations tailored for network pruning and quantization.
However, these works are geared towards static sparsity, making
them suitable for weight sparsity, but not directly applicable to acti-
vation/spatial sparsity. Activation/spatial sparsity patterns change
with different inputs, so methods designed for static sparsity can
generate efficient kernels for a specific sparse pattern but incur
high overhead for dynamic sparsity. These methods must copy
and store non-zero data in a dense format (e.g., compressed sparse
row format) [24, 35, 36] and generate kernels based on this format.
This step must be repeated before each computation for dynamic
sparsity, leading to significant overhead.

2.3 Related Works
Recent progress in tensor compilers has been made in supporting
dynamic dense neural networks. Most efforts focus on graph-level
and control-flow optimizations, including Nimble [39], DISC [40],
Cortex [41], and Cocktailer [42]. However, these approaches are

Adreno 650

0.0 0.2 0.4

TFLite

Jetson AGX Xavier

Non-Zero Element Ratio

N
o

rm
a

li
z
e

d
 S

p
e

e
d

u
p

0.0 0.2 0.4

1

2

cuDNN

cuSparse

Gather-Scatter

DynaSpa

Gather-Scatter

DynaSpa

Figure 3: No practical speedup for moderated (50%-99%) sparsity
with sparse tensor libraries.

orthogonal to our challenges when addressing dynamic spatial spar-
sity. DietCode [43] proposes an auto-scheduler to handle dynamic
input shapes. However, it is still tailored for dense workloads and
cannot deal with the dynamic spatial sparsity. Another line of work
focuses on reducing the compilation time of tensor compilers. Ro-
mou [7] identifies performance bottlenecks in mobile GPUs, which
we have also absorbed into our schedules. Roller [44] introduces
a constructive approach to generate kernels. Instead of using a
data-driven auto-scheduler, Roller relies solely on a direct search
to identify kernel implementation parameters optimized for maxi-
mum throughput. PIT [31], a just-in-time (JIT) compiler, supports
dynamic sparsity only for matrix multiplication due to the restric-
tion of permutation-invariant operations. As a result, we must
use explicit GEMM-based algorithms for convolutions, which are
typically 1.5 times slower than other convolution algorithms [45].
Additionally, as a JIT compiler, PIT naturally incurs extra runtime
overhead and cannot jointly optimize computation schemes and
sparse patterns, easily leading to resource wastage. Furthermore,
each layer’s sparsity often varies for different inputs, increasing
PIT’s runtime overhead (40 µs to 500 µs) [31]. Our approach, using
bitmasks, significantly reduces index generation and kernel selec-
tion time (less than 10 µs), as discussed in Section 3.4. Table 1 shows
the differences between DynaSpa and other algorithms.

3 DynaSpa Design
This section presents DynaSpa’s design details, an overview of
which is illustrated in Figure 4. DynaSpa divides data into DIS-
Tiles and only reads the non-zero tiles into the L1/Shared Memory,
thereby skipping the reading and computing other zero regions
(Section 3.1). Using the PolyKernel Auto-Scheduler, DynaSpa can
offline select candidates from various possible DISTile sizes and
computation methods (Section 3.2). To reduce the search space of
the PolyKernel Auto-Scheduler, DynaSpa uses an analytical perfor-
mance model to eliminate poorly performing search points (Sec-
tion 3.3). At runtime, DynaSpa can select the optimal computation
kernel from the candidates with low overhead (Section 3.4).

3.1 DynaSpa Representation
First we introduce the DynaSpa representation, a new abstraction
for spatially-sparse tensor operators that supports relaxed sparsity
composition.

Dense-In-Sparse Tile (DISTile). One challenge in optimizing
efficient computing kernels for spatially-sparse operators is the
poor memory access pattern and limited data reuse, where a trade-
off exists between memory efficiency and computation efficiency.

424

SenSys ’24, November 4–7, 2024, Hangzhou, China R. Liu et al.

DynaSpa Representation

Section 3.1 Section 3.3

PolyKernel Auto-Scheduler

Section 3.2

Offline

Runtime

DynaSpa Runtime

Section 3.4

Workload

Dispatched Kernel

Analytical Performance Model

Kernel 1 ...Kernel 2 Kernel K

Spatially-Sparse Operatorcompute((32,32,128),lambda h,w,o: M[h,w] * sum(X[h+r, w+s, c]* K[r, s, c, o], axis=[r,s,c]))

Auto Scheduling Search Space

graunlarity: 2,4Computation_pattern(split,reorder,fuse,IJJ)
graunlarity: 4,4Computation_pattern(split,reorder,fuse,IJJ)

..
.

Pruned Search Space

graunlarity: 4,4Computation_pattern(split,reorder,fuse,IJJ)

Figure 4: DynaSpa overview.

Spatial sparsity is usually globally sparse but locally dense. DynaSpa
employs relaxed sparsity composition, admitting extra unneeded
computations (involving zero-valued multiplications) to achieve a
more regular block-sparse structure.

Therefore, we propose a new tile abstraction called Dense-In-
Sparse Tile (DISTile) that composes spatially-sparse tensor compu-
tation into a virtually dense nested loop. Traditional computation
kernels (i.e., cuDNN [29] and TFLite [30]) also divide data into tiles
and assign the tiles to computation units. However, DISTile focuses
only on the tiling of non-zero regions, avoiding the need to read and
compute zero regions, thereby conserving resources for edge GPUs.
As shown in Figure 5, the DISTile encapsulates a multi-dimensional
sparsity granularity, defined along each loop axis of a given spar-
sity mask and tensor expression expr. Given granularity and
sparsity mask, Generate_DISTiles can infer DISTiles and their
top-left index ind for addressing. In addition, to simplify the illus-
tration, in Figure 5, Generate_DISTiles is applied to the whole
sparsity mask, and thus the DISTiles extracted are horizontally and
vertically aligned. However, DynaSpa provides an option to apply
Generate_DISTiles independently to the individual connected
components of the sparsity mask. This leads to unaligned DISTiles
across different connected components. While this approach of-
fers flexibility, it introduces additional runtime overhead due to
the parallel connected-component labeling process [46] in DISTile
generation.

DISTile operates on the output mask, and DynaSpa reads the
corresponding input and weight data directly from DRAM/Global
Memory into the L1 cache/Shared Memory based on the DISTile
index. In contrast, cuSparse [24] and Gather-Scatter methods [15,
16, 22] typically require rearranging sparse data into a dense format
in DRAM/Global Memory explicitly before computation. DynaSpa
eliminates the copy overhead by directly accessing the necessary
data.

Phantom Read/Write. In Generate_DISTiles, the shape of
the sparsitymask usually cannot be evenly divided by granularity.
DynaSpa is designed to support any valid granularity to generate
the best-performing kernel during auto-scheduling. However, im-
properly handling non-divisible granularity value can adversely
impact performance. For example, as shown in Figure 5, there is a
workload with a sparsity mask of shape [5 × 5] and granularity
[2 × 2]. The generated DISTile3 includes two sub-workloads, lo-
cated at (2, 5) and (3, 5), which do not exist in the original compu-
tation. We call these sub-workloads phantom.

In DISTile, we introduce phantom read/write to address two key
questions: should these phantom workloads be computed, and how
should the read and write operations be carried out? Regarding the

first question, although phantom computations are redundant, they
help eliminate branch instructions and prevent thread divergence,
which can serialize GPUwarps and increase latency [47]. Regarding
the second question, to avoid unnecessary global memory opera-
tions, DISTile does not read data from global memory for phantom
workloads. Instead, it checks boundaries and assigns 0 to the cache.
During write-back, it rechecks boundaries and stops write-back for
phantom workloads, ensuring tensor program integrity. The bound-
ary checks have a negligible impact on latency, as long-latency
global memory operations hide the latency induced by phantom
read/write.

3.2 PolyKernel Auto-Scheduler
The DynaSpa representation described in Section 3.1 can have ar-
bitrary sizes. Each DISTile can also be assigned to compute units
in different ways, such as varying the computation order within
each DISTile. To find the optimal computation scheme, we intro-
duce the PolyKernel auto-scheduler. It generates a set of candidate
computation kernels offline within a limited number of searches.

Polyalgorithm Formulation for Dynamic Sparsity. Given
specific hardware, optimal kernel implementations can vary greatly
depending on the sparsity ratio and patterns. Therefore, finding a
single implementation that efficiently handles all forms of spatial
sparsity is nearly impossible. In DynaSpa, we adopt the conven-
tional polyalgorithm approach used in the vendor library. We offer
multiple kernel implementations and select the most suitable one
during runtime. Therefore, the problem naturally can be partitioned
into two parts. Firstly, how to automatically search a set of kernel
implementations that can handle all possible cases while achieving
the best overall speedup. Secondly, how to dispatch the best kernel
implementation at runtime with minimal overhead. We will now
focus on the first challenge and explore the second in Section 3.4.

Without loss of generality, let 𝜏 represent a code template paired
with a set of tuning knobs 𝜃 , representing potential schedules (e.g.,
split, fuse, reorder). The space of all possible schedules is denoted
by Θ. We represent the corresponding low-level code as 𝜏 (𝜃). Our
primary objective is to minimize the actual running cost (e.g., exe-
cution time) denoted by 𝑓 (·) on specific hardware. The analytical
expression of 𝑓 (·) is unknown in advance, but we can make queries
by executing experiments on hardware and taking measurements
as feedback. Instead of finding an optimal schedule 𝜃∗ that mini-
mizes the running cost, the polyalgorithm approach searches for
an optimal set of schedules with the following objective:

argmin
S𝜃 ⊂Θ

E𝑚∼M
[
min
𝜃 ∈S𝜃

𝑓
(
𝜏 (𝜃),𝑚

)]
s.t. ∥S𝜃 ∥ ≤ 𝑘, (1)

425

DynaSpa: Exploiting Spatial Sparsity for Efficient Dynamic DNN Inference on Devices SenSys ’24, November 4–7, 2024, Hangzhou, China

[0,1][0,0]

[1,0] [1,1]

[0,3][0,2]

[1,2] [1,3]

[2,1][2,0]

[3,0] [3,1]

[2,3][2,2]

[3,2] [3,3]

[0,4]

[1,4]

[2,4]

[3,4]

[4,0] [4,1] [4,2] [4,3] [4,4]

[0,5]

[1,5]

[2,5]

[3,5]

[4,5]

[5,0] [5,1] [5,2] [5,3] [5,4] [5,5]

[0,1][0,0]

[1,0] [1,1]

DISTile0.ind = [0,0]DISTile0.granularity = [2,2]
[2,1][2,0]

[3,0] [3,1]

DISTile1.ind = [2,0]DISTile1.granularity = [2,2]

granularity: [2,2]Generate_DISTiles()

class DISTile { Granularity granularity; Indices ind; TensorExpr expr;}
[2,3][2,2]

[3,2] [3,3]

DISTile2.ind = [2,2]DISTile2.granularity = [2,2]
[2,5][2,4]

[3,4] [3,5]

DISTile3.ind = [2,4]DISTile3.granularity = [2,2]

[0,1][0,0]

[1,0] [1,1]

[0,3][0,2]

[1,2] [1,3]

[2,1][2,0]

[3,0] [3,1]

[2,3][2,2]

[3,2] [3,3]

[0,4]

[1,4]

[2,4]

[3,4]

[4,0] [4,1] [4,2] [4,3] [4,4]

Non-Zero ZeroPhantom

Figure 5: DynaSpa representation: DISTile generation w/ phantom read/write

where S𝜃 ⊂ Θ is the set of optimal schedules whose cardinality is
less than 𝑘 , and𝑚 denotes the input sparsity mask.

Spatial sparsity is a type of structured sparsity that differs from
random binary matrices. While the analytical probabilistic den-
sity function for the sparsity masks 𝑚 remains unknown, it can
be implicitly determined by sampling sparsity masks that follow
the underlying unknown distribution. This is achieved by feeding
real-world dataset inputs into a spatially-sparse neural network
and collecting sparsity masks from each operator individually as a
separate sample setM. The objective function (1) implies that our
PolyKernel auto-scheduler wants to find, at most, 𝑘 kernel imple-
mentations for a spatially-sparse operator with the best-expected
execution time over all feasible spatial sparsity.

Supermodular Structure in Polyalgorithm. Compared to the
original auto-scheduler problem, our PolyKernel auto-scheduler
adds complexity by introducing an additional combination optimiza-
tion on top of the original auto-scheduling problem. Fortunately,
we can exploit the structure within the polyalgorithm formulation,
which allows us to design an approximate algorithm with perfor-
mance bound. According to the PolyKernel objective (1), we define
a set cost function 𝑔(S) as

𝑔(S) = E𝑚∼M
[
min
𝜃 ∈S

𝑓
(
𝜏 (𝜃),𝑚

)]
, (2)

where S ⊂ Θ is a feasible set of schedules.
Therefore, we can prove that the set function 𝑔(S) is supermodu-

lar by verifying the following inequality. For every feasible schedule
set pair {S1,S2} , where S1 ⊂ S2 ⊂ Θ, and every single schedule
that satisfy 𝑠 ∈ Θ \ S2, we have that

𝑔(S1) − 𝑔(S1 ∪ {𝑠}) ≥ 𝑔(S2) − 𝑔(S2 ∪ {𝑠}) (3)
regardless of the chosen sparsity mask distribution. The inequal-
ity (3) proves that −𝑔(S) is a submodular set function by definition,
leading to the conclusion that 𝑔(S) is supermodular. Therefore, we
can reformulate the original PolyKernel optimization problem (1)
as: argmin

S𝜃 ⊂Θ
𝑔(S𝜃) s.t. ∥S𝜃 ∥ ≤ 𝑘, (4)

which is a supermodular minimization problem or, in equivalent
terms, a submodular maximization problem with a cardinality con-
straint. Although the generic submodular maximization problem
is NP-hard even in the unconstrained setting [48], we can find a
greedy 1 − 1/𝑒 approximation algorithm for monotone submodular
function subject to a cardinality constraint [49]. The computational
complexity of PolyKernel scales linearly with the cardinality of
PolyKernel.

Integration with Existing Search Algorithms. An important
piece of auto-scheduler that we have not discussed in detail before
is the search algorithm. While there are plenty of recent works

on developing better search algorithms for auto-scheduler [50–52],
they generally follow a standard iterative process:

(1) Begin by initializing the cost function, 𝑓 (·), using a specific
machine learning model.

(2) Using the current cost model 𝑓 (·) as the energy function,
Explore-and-Exploit the search space and choose a rep-
resentative set of schedules Q with their executable.

(3) Run the chosen schedules on the targeted hardware. Measure
the kernel execution times and utilize these data as feedback
to update cost model 𝑓 (·).

(4) Repeat step (2) until the cost model converges.
Various search algorithms primarily differ in how they design their
Explore-and-Exploit functions [50–52].

Our PolyKernel search algorithm is shown in Algorithm 1. To
integrate PolyKernel into the existing iterative process, we face two
major challenges. Firstly, our optimization objective is based on an
expectation over dynamic spatial sparsity instead of a static work-
load. To approximate the expectation within our set cost function
𝑔(S), we use a mini-batch average for stochastic optimization:

𝑔(S) ≈ 𝑔(S,M′) = 1
∥M′∥

∑︁
𝑚∈M′

min
𝜃 ∈S

𝑓
(
𝜏 (𝜃),𝑚

)
(5)

whereM′ is a mini-batch sampled randomly from the complete
sparsity mask datasetM. Mini-batch stochastic optimization has
been widely adopted in various machine learning model training.
As shown in Line 5 of Algorithm 1, we sample a mini-batch sparsity
mask for every iteration.

Secondly, we need to embed the greedy supermodular minimiza-
tion algorithm within the search procedure. The greedy approach
provides a simple solution with a nice approximation guarantee
for the supermodular minimization problem defined in (4). The
solution starts with an empty set S0 and then repeats the following
step for 𝑖 ∈ [1, 𝑘]:

S𝑖 = S𝑖−1 ∪
{
argmin
𝑠∈Θ\S𝑖−1

Δ𝑔 (𝑠 |S𝑖−1,M)
}

(6)

Δ𝑔 (𝑠 |S,M) = 𝑔(S ∪ {𝑠},M) − 𝑔(S,M) . (7)
The algorithm enlarges the solution set using a greedy approach
that selects the element offering the best marginal gain, as defined
in (7). Within Algorithm 1, we integrate concepts of greedy su-
permodularity in Lines 7 to 10 and 16 to 20. While the original
Explore-and-Exploit focuses solely on identifying the represen-
tation set for a single optimal implementation, our objective is to
adapt this process for PolyKernel. Therefore, as shown in Lines 7 to
10, we introduce a for loop, adopting themarginal gain cost function
instead of the original one, emulating the greedy approach for su-
permodular optimization. In Lines 16 to 20, we conduct the greedy

426

SenSys ’24, November 4–7, 2024, Hangzhou, China R. Liu et al.

Algorithm 1: PolyKernel Auto-Scheduling
1 Input: Transformation space Θ, and sparsity mask setM ;
2 Output: Selected schedule configuration S𝜃 = {𝜃𝑖 }𝑘𝑖=1 ;
3 D ← ∅ ;
4 while n_trials < max_n_trial do
5 Sample a mini-batch sparsity masksM′ fromM ;
6 Q ← ∅ ;
7 for 𝑖 ∈ [0, 𝑘) do
8 Explore-and-Exploit the representative schedules𝑄𝑖 using

Δ𝑔 (· | Q,M′) defined in equation (7) as the energy function ;
9 Q ← Q ∪ Q𝑖 ;

10 end
11 for 𝑞 ∈ Q do
12 D ← D ∪ {[𝑞, Perf(𝑞)] } ; /* Run measurement on hardware

environment */

13 end
14 Update the cost function 𝑓 (·) using D
15 end
16 S𝜃 ← ∅ ;
17 for 𝑖 ∈ [0, 𝑘) do
18 𝑑𝑖 = argmin𝑑∈D\S𝜃 𝑔 (S𝜃 ∪ {𝑑 [0] }) − 𝑔 (S𝜃) ;
19 S𝜃 ← S𝜃 ∪ {𝑑𝑖 [0] } ;
20 end

supermodularity algorithm again to decide the final PolyKernel
output. One thing to notice is that the majority of time consumed
by the search algorithm is dedicated to hardware profiling (Lines 11
to 13) [51, 52]. Our PolyKernel algorithm increases the profiling set
by a factor of 𝑘 . Therefore, the time complexity of the PolyKernel
search is proportional to the number of PolyKernel implementa-
tions.

3.3 Analytical Performance Model
Based on Section 3.1 and 3.2, we are able to generate computa-
tion kernels for operators with dynamic sparsity. However, this
comes with the trade-off of an expanded search space (i.e., DISTile
granularity and PolyKernel). In this section, we will introduce our
architecture-aware analytical cost model for search space pruning.
Constructing an accurate cost model poses significant challenges.
Therefore, we extend memory hierarchy models [53], aiming to es-
timate the upper-bound performance of tensor operations for given
GPU architecture and kernel implementation parameters. Specif-
ically, we decompose total latency into data access latency from
memory hierarchy and computation latency, checking the perfor-
mance limiting factors individually. We program the Jetson GPU
code using CUDA [54] and the Mobile GPU using OpenCL [55].
Due to the varying software and hardware terminologies employed
by different GPU architectures and programming languages, as
illustrated in Table 2, we primarily adopt a CUDA-style description
for consistency.

Global Memory Latency. Ensuring “coalesced” access patterns
is crucial for achieving the best performance in global memory
access. When threads in a warp access consecutive memory ad-
dresses, the GPU can efficiently combine these accesses into a single
transaction, boosting bandwidth utilization and enhancing perfor-
mance. For example, in Figure 6a, a GPU thread block needs to
fetch a 4 × 8 tile from a 16 × 16 matrix. This matrix is stored in the
GPU’s global memory in a row-major format. Given that the global
memory transaction size, 𝐺𝑡𝑟𝑎𝑛𝑠 , is set to 32, one might initially
expect that (4 × 8)/32 = 1 global memory transaction would be

Table 2: GPU terminology comparison.
Embedded Jetson/CUDA Mobile/OpenCL

Streaming Multiprocessor (SM) Shader Core
Shared Memory L1 Cache/Local Memory
Thread Block Work Group

Thread Work Item

Global

Memory

Transaction 1

Transaction 2

(a) Transactions

Execution time

SM units

SM SM SM SM

[#warp,#register,shared mem]?

Execution time

SM SM SM SM

Thread block A

Thread block B

SM units

(b) SM occupancy

Figure 6: (a) Memory coalescing and calculating # global memory
transaction; (b) GPU SM occupancy calculation according to #warp,
#register, shared memory consumed by thread blocks and provided
by SMs.

sufficient to fetch the tile. However, in reality, we require 2 global
memory transactions. This is because the 4×8 tile data is not stored
contiguously within the global memory. As a result, the available
memory bandwidth is not fully exploited in this scenario.

Therefore, to estimate the global memory latency, we compute
the number of global memory transactions of a thread block, de-
noted as 𝑁𝐺𝑀𝑇 . The pattern of access to global memory is defined
by a specific schedule template fromwhich DynaSpa can directly de-
termine 𝑁𝐺𝑀𝑇 analytically. It is important to note that the template
contains one or more virtual loops. These loops are maintained in
the DynaSpa representation. We assume no memory continuity
across these virtual loops. The global memory latency 𝑇𝑔𝑙𝑜𝑏𝑎𝑙 is
thus defined as

𝑇𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑆𝑡𝑦𝑝𝑒 ·𝐺𝑡𝑟𝑎𝑛𝑠 · 𝑁𝐺𝑀𝑇 · 𝑁𝑏𝑙𝑘/𝐵𝑔𝑙𝑜𝑏𝑎𝑙 , (8)
where 𝑆𝑡𝑦𝑝𝑒 is the size data type of input element in bytes (e.g., 4
for a float value), 𝐵𝑔𝑙𝑜𝑏𝑎𝑙 is the global memory bandwidth of the
GPU in bytes per second, and 𝑁𝑏𝑙𝑘 is the number of thread blocks.
In addition, 𝐵𝑔𝑙𝑜𝑏𝑎𝑙 is provided by device specification or can be
measured with profiling tools [7, 56].

Shared Memory Latency. Shared memory is dedicated to each
execution unit in a GPU, such as the streaming multiprocessor
(SM) in a Jetson GPU. Consequently, shared memory latency is
closely tied to how thread blocks are allocated to SMs. As shown in
Figure 6b, not every thread block can be processed by SMs simulta-
neously within a single cycle. Thus, to estimate latency, we break
down the problem into two parts: 1) determining the number of
cycles required to complete all thread blocks and 2) evaluating the
shared memory latency within a single cycle.

To address the first question, several factors play a role in SM
occupancy [57]. However, the fundamental approach to determine
the number of thread blocks that can run concurrently on a sin-
gle SM is by examining the ratios between the available capacity
of each dedicated resource and the resource requirements of a
thread block. Here, we focus on four resource types: shared mem-
ory, warps/threads, registers, and thread blocks.

𝐾 = min
{⌊
𝑆𝑀𝑡ℎ𝑟𝑑

𝑁𝑡ℎ𝑟𝑑

⌋
,

⌊
𝑆𝑀𝑠ℎ𝑎𝑟𝑒𝑑

𝑆𝑠ℎ𝑎𝑟𝑒𝑑

⌋
,

⌊
𝑆𝑀𝑟𝑒𝑔

𝑁𝑟𝑒𝑔

⌋
, 𝑆𝑀𝑏𝑙𝑘

}
𝐶 =

⌈
𝑁𝑏𝑙𝑘/𝐾

⌉
,

(9)

427

DynaSpa: Exploiting Spatial Sparsity for Efficient Dynamic DNN Inference on Devices SenSys ’24, November 4–7, 2024, Hangzhou, China

0 20 40 60 80 100 120 140

Nwarp (#Warp in each SM)

0

20

40

60

80

100

ti
m

e
(m

s)

1000 * TEST_NUM MACs

1500 * TEST_NUM MACs

2000 * TEST_NUM MACs

2500 * TEST_NUM MACs

1 __global__ void op_latency_kernel (float* result) {

2 int k;

3 float j = 1.;

4 float m = 3.;

5 float n = 5.;

6 j = j + 1.*threadIdx.x;

7 m = m + 1.*threadIdx.x;

8 for (k = 0; k <= 1000; k++) {

9 repeat512(n += m*j; m += n*j; j += n*m;); }

10 result[threadIdx.x] = n; }

Nops (#MAC in each thread)

Figure 7: Microbenchmark: 𝑡𝑖𝑚𝑒 = 𝛼 · 𝑁𝑜𝑝𝑠 · 𝑁𝑤𝑎𝑟𝑝 + 𝛾 .

where 𝐾 and 𝐶 denote the number of thread block that can run
concurrently on a single SM and the number of cycles required to
complete all thread blocks, respectively. 𝑆𝑀𝑡ℎ𝑟𝑑 , 𝑆𝑀𝑠ℎ𝑎𝑟𝑒𝑑 , 𝑆𝑀𝑟𝑒𝑔 ,
and 𝑆𝑀𝑏𝑙𝑘 denote the capacities of threads, shared memory, regis-
ters, and thread blocks that a single SM can support. 𝑁𝑡ℎ𝑟𝑑 , 𝑆𝑠ℎ𝑎𝑟𝑒𝑑 ,
and 𝑁𝑟𝑒𝑔 denote the number of threads, shared memory size, and
number of registers requested by a single thread block. Therefore,
we calculate the shared memory latency 𝑇𝑠ℎ𝑎𝑟𝑒𝑑 as:

𝑇𝑠ℎ𝑎𝑟𝑒𝑑 = 𝐶 · 𝐾 · 𝑆𝑠ℎ𝑎𝑟𝑒𝑑 · 𝛽𝑏𝑐/𝐵𝑠ℎ𝑎𝑟𝑒𝑑 , (10)
where 𝐵𝑠ℎ𝑎𝑟𝑒𝑑 is the shared memory bandwidth of the GPU and
𝛽𝑏𝑐 is the coefficient indicating the degree of shared memory bank
conflicts. The access pattern for shared memory is determined stati-
cally, allowing us to calculate the number of conflicts prior to kernel
generation. For every shared memory load operation, DynaSpa ex-
amines the addresses accessed by a warp. It then determines if bank
conflicts arise and computes the expected number of cycles for each
shared-memory load [56]. If the expected number of bank conflicts
is 0, we set 𝛽𝑏𝑐 to be 1.

Computation Latency. Similar to shared memory latency, com-
putation latency is tied to how thread blocks are allocated among
SMs. We can thus reuse the result (9) and focus on the computation
latency for a single thread-block cycle. However, the number of
warps executed at the same time on a GPU is typically unknown and
can be affected by latency hiding due to warp switching [58]. To bet-
ter understand this, we implemented a micro-benchmark, which is
a one-time offline profiling that aims to determine the computation
latency as we increase the number of warps and operations carried
out in each thread, with the operations being multiply-accumulate
(MAC) in our case.

As shown in Figure 7, the relationship among computation la-
tency, the number of warps, and the number of operations in each
thread can be approximated by a linear function. In addition, the
micro-benchmark, which continually performs the same operation
using identical data input, can inadvertently be “optimized” via com-
mon subexpression elimination by the NVIDIA nvcc compiler. To
address this, we have been careful to avoid compiler-recognizable
patterns, as illustrated in Line 9 in Figure 7. Therefore, we calculate

the computation latency 𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 as:
𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒 = 𝐶 · (𝛼 · 𝑁𝑜𝑝𝑠 · 𝑁𝑤𝑎𝑟𝑝 + 𝛾), (11)

where 𝑁𝑤𝑎𝑟𝑝 denotes the number of warps consumed in a single
SM, and 𝑁𝑜𝑝𝑠 denotes the number of MAC operations executed by
each thread in a warp. 𝛼 and 𝛾 are linear coefficients learned from
the microbenchmark.

Upper-bound Performance Model. One significant benefit
of multithreading in GPUs is latency hiding, allowing for the con-
current execution of memory access and computation [58]. While
determining the exact degree of overlap due to latency hiding in
practice is challenging, DynaSpa focuses solely on establishing an
upper-bound performance model used to prune the search space
guaranteed to have poor performance. Therefore, we take the as-
sumption that all the latency components can perfectly hide the
others, with the total latency being the worst among them.

𝑇𝑡𝑜𝑡𝑎𝑙 = max
{
𝑇𝑔𝑙𝑜𝑏𝑎𝑙 ,𝑇𝑠ℎ𝑎𝑟𝑒𝑑 ,𝑇𝑐𝑜𝑚𝑝𝑢𝑡𝑒

}
, (12)

DynaSpa computes 𝑇𝑡𝑜𝑡𝑎𝑙 for possible combinations in the original
search space, which takes at most 6 min for all operators we have
encountered. Then, it picks the top 0.1% of the best-performing
combinations. This set forms the pruned search space and is fed
into our PolyKernel auto-scheduler.

3.4 DynaSpa Runtime
The previous sections present the whole offline process for auto-
mated optimization of DNN operators with spatial sparsity. What
remains to be discussed is the runtime architecture of DynaSpa,
including efficient mask generation, PolyKernel selection, and mem-
ory planning.

Bitmask & Bitwise DISTile Generation. Due to the input-
dependent spatial-sparsity masks in the workloads, DynaSpa needs
to select the most proper GPU kernel from PolyKernel and extract
the corresponding DISTiles at runtime. Two critical factors govern
the selection of the optimal kernel implementation from PolyKernel:
DISTile granularity and the total number of DISTiles. In DynaSpa,
although PolyKernel is capable of adjusting launch configurations
based on the total number of DISTiles, we opt for fixed launch con-
figurations to minimize overhead and avoid potential performance
fluctuations. Therefore, the feasibility and execution time of each
implementation in PolyKernel can be accurately assessed via offline
profiling and runtime table enumeration.

To this end, our runtime calls for an efficient implementation for
DISTiles generation when given a granularity selection. We design
our DISTile generation process based on bitmasks and bitwise op-
erations. As shown in Figure 8, by leveraging GPU parallelism and
highly efficient bitwise operations, we first transform the sparsity
mask to the bitmask. Then, the tiled mask is obtained based on
the bitmask and tile templates. Here, we carefully organize the
thread access pattern to avoid bank conflicts. Finally, the DISTile
indexes are obtained accordingly. The whole process can be scaled
to multiple thread blocks with different granularity as inputs. After
that, we can simply check the profiling table to find the candidates
that can accommodate the number of DISTiles for the given input,
and then select the best-performing kernel based on the shortest
execution time from these candidates.

Memory Planning.Memory planning is important for efficient
deep learning inference on GPU. Unlike the training phase, there is

428

SenSys ’24, November 4–7, 2024, Hangzhou, China R. Liu et al.

__global__ void MasktoIdx_kernel(

 int* __restrict__ Mask, long long* __restrict__ Mask_Tile_Factors,

 int* __restrict__ DISTile_Idx, int* __restrict__ sum) {

 __shared__ long long bitMask[H];

 __shared__ int Mask_Tiled[(H/Tiled_H)*(W/Tiled_W)];

 long long bitmask_local = 0;

 /*Mask to Bitmask*/

 if ((int)threadIdx.x < H) {

 for (int i = 0; i < W; ++i) {

 bitmask_local <<= 1;

 bitmask_local |= Mask[W*threadIdx.x + i]; }

 bitMask[(int)threadIdx.x] = bitmask_local; }

 __syncthreads();

 /*Bitmask to Tiled Mask*/

 bitmask_local = 0;

 for (int i = 0; i < Tiled_H; ++i) {

 bitmask_local |= bitMask[Tiled_H*((int)threadIdx.x%(H/Tiled_H))+i]

 & Tile_Template[(int)threadIdx.x] ; }

 Mask_Tiled[(W/Tiled_W) * ((int)threadIdx.x%(H/Tiled_H))

 + (int)threadIdx.x/(H/Tiled_H)] = bitmask_local ? 1 : 0;

 __syncthreads();

 /*Tiled Mask to DISTile Index*/

 bitmask_local = 0;

 if ((int)threadIdx.x == 0) {

 for (int i = 0; i < (H/Tiled_H) * (W/Tiled_W); ++i) {

 if (Mask_Tiled[i]) {

 DISTile_Idx[bitmask_local] = i;

 bitmask_local++; } }

 sum[0] = bitmask_local; } }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

0b111000 = 56 1 1 1
Thread 0

0b011000 = 24 1 1
Thread 1

0b011100 = 28 1 1 1 0 00
Thread 2

0b001111 = 15 1 1 1 10 0 Thread 3

Mask to Bitmask
Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

1 1

1 1

1

1

0

0

0 0

0 0

1 1

00

0 00

0 000

00

0

1 1

10

1

10

0

Thread 0: (56 & 48) | (24 & 48) ? 1 : 0

 56 & 48 =

1 1 1 0 0 0

1 1 0 0 0 0

1 1 0 0 0 0&

 24 & 48 =

1 0 0 0

1 0 0 0 0

1 1 0 0 0 0&
43 50 1 NaN

Bitmask to Tiled Mask

Tiled Mask to DISTile Idx

11 1

1 1 0

Bitmask

Tile Template

DISTile Idx

Tiled Mask

Figure 8: GPU kernel for Generate_DISTiles via bitmasks
and bitwise operations.

no need to store intermediate layer representations throughout the
entire inference process. Utilizing static memory planning allows
us to allocate a limited number of output buffers and reuse them
across various layers. This approach significantly reduces memory
allocation time. Without loss of generality, assume that we have
two memory buffers and a neural network with a sequential struc-
ture. Tensor operations can be seamlessly executed by using one
buffer for input data and the other for output, swapping them as
required when going through the neural network. However, we will
encounter a problem for a spatially-sparse neural network inference
with such a double-buffer strategy. Unlike dense tensor outputs,
which overwrite an entire block of memory, spatially-sparse tensor
outputs overwrite only a sparse set of memory addresses within
a block. This implicitly requires a memory block initialized with
0. Therefore, DynaSpa leverages a triple-buffer strategy. We use
one for input, another for output, and asynchronously initialize
the third for the next spatially-sparse operation. The initializa-
tion latency can be hidden by the computation latency without
blocking the inference. To implement this strategy, DynaSpa lever-
ages clEnqueueFillBuffer in OpenCL and cuda stream in Jetson
GPUs.

4 Implementation
We integrate DynaSpa with TVM [27], a code-generation tool. By
leveraging TVM APIs, DynaSpa creates tunable computation tem-
plates for spatially-sparse operators. Figure 9 illustrates an example

X=placeholder(34,34,128)K=placeholder(3,3,128,128)M=placeholder(32,32)Y=compute((32,32,128), lambda h,w,o:M[h,w]*\ sum(X[h+r,w+s,c]*K[r,s,c,o],axis=[r,s,c]))sch=Create_schedule(Y.op)

�����������������������
Generated Code

disid_0, disid_1=sch.split("disid",2)o_0, o_1=sch.split("o",16)c_0, c_1=sch.split("c",32)f_th_tw=sch.fuse([”th”,“tw”])sch.reorder([”disid_0”,“o_0”,“disid_1”, “f_th_tw”,“o_1”,“c_0”,“r”,“s”,“c_1”])sch[C].bind(disid_0,thread_axis(”blockIdx.y”))sch[C].bind(o_0,thread_axis(”blockIdx.x”))sch[C].bind(disid_1,thread_axis(”threadIdx.y”))sch[C].bind(f_th_tw,thread_axis(”threadIdx.x”))

������ �����������!"�#$%&"'���&#
Generated Code

granularity=[4, 4]DIS_Tiles=Generate_DISTiles(M,granularity,Y.op)sch=Create_schedule(Y.op,DIS_Tiles)
Generated Code������(�����������)�$���&#�*+�!���

Non-Zero Zero granularity:[4,4]

Figure 9: Generated computation scheme sample (pseudo-
code in a Python-like syntax) for spatiall-sparse Conv2D.

of generated code for Conv2D. In the first stage, we declare the in-
put tensors. Then, we utilize an index-based lambda expression for
tensor computation [27, 28]. The generated code at this stage retains
the sparse loop iteration with poor access patterns. In the second
stage, our DISTile generation outputs DIS_Tiles, encompassing
all related DISTile information (i.e., ID, index, and granularity). We
then leverage the generated DIS_Tiles to compose locally dense
computation tiles into a virtual dense loop. Finally, we can apply all
existing schedules to our spatially-sparse operation, including loop
transformations (e.g., split, fuse), computation management (e.g.,
compute_at), and parallelism (e.g., bind, vectorize). Throughout
this process, DynaSpa automatically maintains the necessary index-
ing and boundary checking. Changing the parameter values (e.g.,
granularity, split) in the tunable template can generate different
computation patterns. DynaSpa utilizes TVM APIs to incorporate
all possible patterns into the search space. After reducing the search
space with the analytical performance model, DynaSpa employs
the PolyKernel Auto-Scheduler to identify optimal computation
candidates.

5 Evaluation
We evaluate the performance of generated spatially-sparse pro-
grams at two levels: single operators and entire neural networks.

429

DynaSpa: Exploiting Spatial Sparsity for Efficient Dynamic DNN Inference on Devices SenSys ’24, November 4–7, 2024, Hangzhou, China

cuSparse

Gather-Scatter

PIT

AutoTVM

DynaSpa

cuDNN

MACE

Gather-Scatter

PIT

TFLite

AutoTVM

DynaSpa

TFLite

MACE

Gather-Scatter

PIT

AutoTVM

DynaSpa

TFLite

MACE

Gather-Scatter

PIT

AutoTVM

DynaSpa

Gather-Scatter

PIT

AutoTVM

DynaSpa

TFLite

cuSparse

Gather-Scatter

PIT

AutoTVM

DynaSpa

cuDNN

cuSparse

Gather-Scatter

PIT

AutoTVM

DynaSpa

cuDNN

cuSparse

Gather-Scatter

PIT

AutoTVM

DynaSpa

cuDNN

cuSparse

Gather-Scatter

PIT

AutoTVM

DynaSpa

cuDNN

cuSparse

Gather-Scatter

PIT

AutoTVM

DynaSpa

cuDNN

cuSparse

Gather-Scatter

PIT

AutoTVM

DynaSpa

cuDNN

cuSparse

Gather-Scatter

PIT

AutoTVM

DynaSpa

cuDNN

Figure 10: Single operator performance on embedded and mobile GPUs.

Figure 11: Single operator performance with different batch
sizes.

For each level of evaluation, we compare DynaSpa against the state-
of-the-art tensor compiler and hardware-specific vendor libraries.
All generated tensor programs are evaluated on three hardware
platforms: two embedded GPUs (NVIDIA Jetson AGX Orin and
NVIDIA Jetson AGX Xavier) and a mobile GPU (an Android plat-
form with a Qualcomm Adreno 650 GPU). We set the number of
PolyKernels in DynaSpa to be 6 for all experiments. We use float32
as the data type for all evaluations.
5.1 Single Operator Benchmark
Workloads. We first evaluate DynaSpa on a set of spatially-sparse
deep learning operators from three representative DNNs with spa-
tial sparsity: DynConv [16] convolutional model for image recog-
nition, A-ViT [18] vision transformer for image recognition, and
SIGE [22] image editing and generation tasks. There are in total 30
types of operators with unique shapes and configurations, where
we categorize them into four major types: conv2d with 3×3 kernels
(Conv2D3K), conv2d with 1 × 1 kernels (Conv2D1K), conv2d with

3 × 3 kernels and stride 2 (Conv2D2S), and batch MatMul in trans-
former multi-head attention (Attention). These are the four major
types of spatially-sparse tensor operators in our single-operator
experiments. All three spatially-sparse DNNs can be trained or
configured to operate at different levels of density (i.e., the fraction
of zero elements in the sparsity mask). For our single-operator ex-
periments, we choose three densities, i.e., 0.1, 0.3, and 0.5. Since
densities are expected values that can fluctuate based on inputs,
we feed all inputs from their respective dataset and choose the
operations with the densities that fall within 0.05 deviation, i.e.,
0.1 : [0.05, 0.15], 0.3 : [0.25, 0.35], and 0.5 : [0.45, 0.55]. We will see
the performance of these spatially-sparse DNNs using their native
sparsity masks across layers in the end-to-end network benchmark
in Section 5.2.

Baselines. We include different state-of-the-art baselines for
embedded and mobile platforms, respectively. For embedded GPUs,
we include cuDNN [29], cuSparse [24], AutoTVM [27], PIT [31] and
Gather-Scatter [15, 59]. cuDNN is a library for dense DNN oper-
ators on Jetson GPUs. cuSparse is the NVIDIA library for sparse
tensor operations. AutoTVM is an automated tensor compiler for
dense operators. PIT is an automated tensor compiler for dynamic
sparse operators. PIT does not support sparsity in the two spatial
axes for convolution. To compare performance, we first use the
explicit image-to-column algorithm (im2col) [60], a method that
converts convolution into matrix multiplication by restructuring
the input data, then use PIT. We did not include the time taken for
the PIT conversion operation in the evaluation. Gather-Scatter is an
implementation that supports spatial sparsity. For Conv operations
and Jetson GPUs, we have a specially optimized Gather-Scatter ker-
nel called TorchSparse [59]. For mobile GPU, we include AutoTVM,
PIT, TFLite [30], and MACE [61]. TFLite is a library from Google for
deploying models on mobile. MACE is a deep-learning inference

430

SenSys ’24, November 4–7, 2024, Hangzhou, China R. Liu et al.

Figure 12: The end-to-end speedup ratios for three spatially sparse DNN workloads on three GPU platforms.

Figure 13: The performance of spatial sparse operators in the order of operator execution for three DNNs.

framework from Xiaomi for mobile. In addition, we evaluate all
baselines that deal only with dense operators on the corresponding
dense DNN operations.

Performance Metrics. Since the execution times vary greatly
within each type of operation, we select one baseline as the standard
(cuDNN for embedded GPUs; TFLite for mobile GPU) and compare
the speedup ratios of each method against it. We calculate the
geometric mean of the speedup ratio of all operators with sparsity
masks that fall into the same category. The error bar denotes the
standard deviation of the speedup ratio of each operator.

Results. As shown in Figure 10, DynaSpa outperforms all other
baselines by a large margin (×1.3 ∼ ×4.4 speedup on Jetson AGX
Orin GPU, ×1.6 ∼ ×7.7 speedup on Jetson AGX Xavier GPU, and
×1.5 ∼ ×7.8 speedup onAdrenomobile GPU) for all spatially-sparse
operators on all platforms. Sparse vendor library cuSparse cannot
achieve performance levels comparable to cuDNN, even having
a 0.1 sparsity density. The reasons are twofold. First, cuSparse is
designed to leverage extremely low densities, unfit for spatially
sparse DNNs. Second, cuSparse usually requires explicit format
transformation, involving a large number of global memory oper-
ations, which further degrade the kernel performance. AutoTVM
generally outperforms cuDNN and TFLite but does not leverage
spatial sparsity. PIT performs similarly to AutoTVM but falls short
of DynaSpa’s efficiency because its kernels are generated from a

limited set of dense kernels, which may not suit the current sparse
data.

To the best of our knowledge, Existing vendor libraries on mo-
bile (TFLite) only support static weight sparsity. Moreover, MACE
lacks mobile GPU support for attention operations (i.e. batchMat-
Mul) [62]. Gather-Scatter performs worse than cuDNN and Au-
toTVM in almost all scenarios. In addition, Gather-Scatter has
relatively better results on NVIDIA GPUs and Conv operations
due to having a manually optimized implementation [59]. Other
sparse tensor compilers only support static weight sparsity [35–37],
which achieves performance that is comparable to, or even less
than, AutoTVM. Therefore, we have chosen not to include them for
conciseness. Furthermore, our analysis extends to comparing the
performance of Conv2D3K across different batch sizes. Considering
the constraints of resource-limited devices, which typically utilize
lower batch numbers during inference, our comparison focuses on
batch sizes 1, 2, and 4. As illustrated in Figure 11, DynaSpa consis-
tently outperforms all other baselines across these batch sizes.

5.2 End-to-End Network Benchmark
Workloads. We evaluate the end-to-end inference time for the
previous three spatially-sparse DNNs: DynConv [16] convolutional
model for image recognition, A-ViT [18] vision transformer for
image recognition, and SIGE [22] image editing and generation

431

DynaSpa: Exploiting Spatial Sparsity for Efficient Dynamic DNN Inference on Devices SenSys ’24, November 4–7, 2024, Hangzhou, China

Figure 14: The end-to-end speedup ratios on different datasets.

tasks. It is essential to differentiate between the two cases. In the
single-operator benchmark, a sparsity density value of 0.3 is de-
fined as operators having a sparsity density within the interval
[0.25, 0.35], thereby excluding all other operators. However, in
the end-to-end benchmark, 0.3 indicates that DNNs are trained
with an expected/averaged sparsity density of 0.3 across all lay-
ers. Additionally, we conduct end-to-end experiments on various
datasets including ImageNet [63], COCO [64], PASCAL VOC [65],
and Cityscapes [66], each representing distinct application scenar-
ios. We process the images from these datasets through DynConv.
In each dataset, we select min{1𝑘, 10%} of the images for offline
searching of candidate kernels using DynaSpa, while the remaining
are set aside for testing inference acceleration.

Baselines.We include ONNXRuntimewith the cuDNN backend,
AutoTVM, TFLite, and MACE as baselines. All workloads contain
both spatially-sparse and dense operators. When we apply Dy-
naSpa to dense operators, it removes the parts about DISTiles and
PolyKernel, which defaults to AutoTVM but with a pruned search
space.

Results. As shown in Figure 12, DynaSpa still achieves a signifi-
cant speedup in terms of end-to-end inference on all GPU platforms,
i.e., ×1.4 ∼ ×4.8 speedup for Jetson AGXOrin, ×1.6 ∼ ×4.2 speedup
for Jetson AGX Xavier, and ×1.9 ∼ ×5.5 speedup for Adreno 650.
Compared to the single-operator benchmark, end-to-end inference
usually has a better lower bound but a bit worse upper bound.
The reason is due to the non-uniform sparsity levels across lay-
ers. As shown in Figure 13, A-ViT and SIGE have an increasing
level of sparsity when they go deeper. Figure 14 displays the end-
to-end inference speedup across the datasets. DynaSpa achieves
×1.8 ∼ ×2.4 speedup for AGX Orin, ×1.95 ∼ ×2.9 for AGX Xavier,
and ×2.2 ∼ ×5.1 for Adreno 650. This result indicates that, in prac-
tical inference scenarios, DynaSpa continues to achieve significant
acceleration with data from similar contexts, even when encoun-
tering such data for the first time. The end-to-end inference also
includes all related runtime overhead as well as memory planning
strategies. As shown in Figure 12 and 14, thanks to latency hiding
in GPU, our triple-buffer strategy does not introduce perceptible
overhead. In addition, the speedup pattern of DynaSpa shares sim-
ilarities with AutoTVM. This is because both of them can enjoy
the benefit of automated kernel optimization, especially when a
manually tuned GPU kernel is sub-optimal. However, DynaSpa still
achieves at least ×1.3 ∼ ×4.6 speedup compared to AutoTVM.

Accuracy Impact of DynaSpa. DynaSpa does not affect the
accuracy of dynamically sparse networks. This is because the com-
putation may only involve additional calculations with zeros, but it
does not omit any non-zero elements. The extra calculations with

Table 3: Accuracy Impact Comparison.

Spatially Sparse Original Dynamic DynaSpa DynaSpa
Network Accuracy Accuracy Accuracy Speedup
DynConv 78.25% 75.71% 75.71% ×2.4 ∼ ×5.1
A-ViT 71.3% 71.0% 71.0% ×3.2 ∼ ×4.6
SIGE 0.409 0.416 0.416 ×2.4 ∼ ×3.0

Figure 15: The end-to-end speedup ratios on ImageNet for
DynaSpa and DynaSpa+quantization.

zeros do not influence the final results. As shown in Table 3, the ac-
curacy of three different dynamically sparse networks is presented
for the original network, the dynamic network, and the dynamic
network with DynaSpa applied. As SIGE is a generative network,
the accuracy is represented by the Learned Perceptual Image Patch
Similarity (LPIPS) metric, comparing the generated images with the
ground truth. From the table, it is evident that DynaSpa provides
system support for the implementation of spatially sparse networks
without altering their accuracy.

Quantization Effects on DynaSpa. Quantization significantly
affects the sparsity in neural networks by altering the distribution
of weights and activations. However, its impact on mask selection
in dynamically sparse networks, such as DynConv, is limited. In
DynConv, the mask is selected based on the effective regions of the
input, and quantization does not significantly affect the boundaries
of these regions. The main benefit of quantization lies in increasing
the sparsity of values within the masked regions, making the mask
sparser during generation. Figure 15 shows the speed of DynConv
on ImageNet when using DynaSpa and DynaSpa with quantization.
Here, we focus on the impact of quantization on DynaSpa and do
not take into account the deployment speedups of quantization
itself. We use Quantization Aware Training (QAT) to train with
𝑖𝑛𝑡4 and 𝑖𝑛𝑡8 values, where the values are stored in 𝑓 𝑙𝑜𝑎𝑡32 format
during actual computation to exclude any speed improvements
due to quantization deployment. As shown in Figure15, DynaSpa
achieves a slight speed improvement when using int4 and int8,
indicating that the enhancement in mask sparsity has a limited
effect on the overall end-to-end performance.

5.3 Search Time & Overhead
Search Time Reduction. DynaSpa proposes an analytical upper-
bound model to reduce the PolyKernel search space. The superior
single-operator performance implies that the DynaSpa analytical

432

SenSys ’24, November 4–7, 2024, Hangzhou, China R. Liu et al.

Figure 16: Search steps reduction of DynaSpa. The Y-axis is
the performance relative to the best speedup.

model is capable of reducing the search space without compromis-
ing the performance. In this section, we evaluate our analytical
model in terms of its ability to reduce auto-scheduler search time.
As shown in Figure 16, we compare DynaSpa with two baselines:
1) the original search space; 2) the search space pruning method
proposed in Romou [7]. We pick the most frequently appeared 3× 3
conv operator (i.e., 𝐻 ,𝑊 ,𝐶𝑖𝑛 ,𝐶𝑜𝑢𝑡 = [40, 40, 256, 256]) in DynConv
as the test case on two GPU platforms. The original search space
is too large to be affordable. Compared to Romou, DynaSpa can
further reduce 46% and 58% auto-scheduling time for Jetson and
Adreno GPUs, respectively.

DynaSpa Runtime Overhead. Compared to other existing
tensor compiler techniques, DynaSpa incurs additional runtime
overhead for DISTile generation and PolyKernel dispatch. It is
crucial to note that the number of thread blocks exhibits a linear
scaling relationship with the number of PolyKernels, as depicted in
Figure 8. In all prior experiments, the number of PolyKernels was
set to 6, which is below the level of parallelism supported by GPUs.
Consequently, the runtime overhead remains nearly constant for
each platform, regardless of the sparsity levels and operators. To
evaluate the overhead of DynaSpa runtime, we continue to use
the most frequently appeared 3 × 3 conv operator in DynConv as
our test case on three GPU platforms. As shown in Table 4, The
overhead is primarily composed of three components: the bitmask
generation from the spatial mask, the selection of kernel candidates,
and the generation of non-zero DISTile Indices. As described in
Section 3.4, the bitmask generation can be parallelized by the GPU,
accounting for approximately 4% of the total time in the worst-
case scenario. The Index generation and kernel selection, which
leverage bitwise operations, take less than 2% of the time. Thus,
even in the worst scenario (i.e., Adreno 650 with 0.1 density), the
runtime overhead remains below 6%. Therefore, the overhead in
DynaSpa is acceptable in terms of the achieved speedup.

6 Discussion
While DynaSpa provides significant benefits in reducing computa-
tion overhead and optimizing performance for dynamically sparse
networks, there are certain limitations that need to be addressed in
future work.

From a device perspective, the current Analytical Performance
Model we use for predicting performance on different devices is not
yet accurate enough. The diversity in hardware architectures and
varying characteristics of mobile and edge devices make it challeng-
ing to generalize a model that can accurately predict performance
across all platforms. Further refinement of the performance model
is necessary to ensure better alignment with real-world results.

Table 4: Runtime overhead breakdown.
Overhead Process Time Ratio Description
Bitmask Generation ≈ 4% In parallel

DISTile Idx Generation < 1% Bitwise Operation
Kernel Selection < 1% Bitwise Operation

Total < 6%

From a dynamic perspective, our current focus is primarily on
dynamic spatial sparsity. While this has proven effective, we rec-
ognize that better support for other types of sparsity, particularly
channel-wise sparsity, is required. Channel-wise sparsity offers ad-
ditional opportunities for optimizing DNNs by reducing redundant
computations across channels, and its integration into DynaSpa
is an important area for future research. By extending DynaSpa’s
capabilities to better handle channel-wise sparsity, we can further
enhance its applicability to a wider range of network architectures.

7 Conclusion
In this paper, we propose DynaSpa, an automated kernel optimiza-
tion framework for DNNs with dynamic spatial sparsity. Unlike
traditional vendor libraries and tensor compilers, which are only
effective under extremely high levels of sparsity, DynaSpa is ca-
pable of optimizing tensor computations across all sparsity levels,
especially for the moderate range 50% ∼ 90%. Equiped with our
novel PolyKernel auto-scheduler with run-time dispatch that sup-
ports dynamic sparse workload, as well as an analytical model
with detailed analysis of performance-limiting factors that helps
greatly with search space reduction, DynaSpa is able to effectively
exploit the trade-off between computation reduction and memory
access, and enable users to apply dense scheduling primitives to
spatially-sparse operators. We have conducted thorough experi-
mental evaluations of DynaSpa across a multitude of settings, and
observe that it can achieve up to ×5.8 end-to-end speedup across
various GPU platforms with no loss in accuracy compared with
dynamic networks.

8 Disclaimer
This paper was prepared for information purposes by the teams of
researchers from the various institutions identified above, including
the Global Technology Applied Research group of JPMorgan Chase
Bank, N.A.. This paper is not a product of the Research Department
of JPMorgan Chase Bank, N.A. or its affiliates. Neither JPMorgan
Chase Bank, N.A. nor any of its affiliates make any explicit or
implied representation or warranty and none of them accept any
liability in connection with this paper, including, but limited to,
the completeness, accuracy, reliability of information contained
herein and the potential legal, compliance, tax or accounting effects
thereof. This document is not intended as investment research or
investment advice, or a recommendation, offer or solicitation for
the purchase or sale of any security, financial instrument, financial
product or service, or to be used in any way for evaluating the
merits of participating in any transaction.

9 Acknowledgements
This work is in part supported by the National Science Foundation
grants IIS-2107200 and CNS-2038658.

433

DynaSpa: Exploiting Spatial Sparsity for Efficient Dynamic DNN Inference on Devices SenSys ’24, November 4–7, 2024, Hangzhou, China

References
[1] Peizhen Guo, Bo Hu, andWenjun Hu. Mistify: Automating {DNN} model porting

for {On-Device} inference at the edge. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21), pages 705–719, 2021.

[2] Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. Dynamic adaptive dnn
surgery for inference acceleration on the edge. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications, pages 1423–1431. IEEE, 2019.

[3] Hao Wu, Xuejin Tian, Minghao Li, Yunxin Liu, Ganesh Ananthanarayanan,
Fengyuan Xu, and Sheng Zhong. Pecam: privacy-enhanced video streaming
and analytics via securely-reversible transformation. In Proceedings of the 27th
Annual International Conference on Mobile Computing and Networking, pages
229–241, 2021.

[4] Hao Wen, Yuanchun Li, Zunshuai Zhang, Shiqi Jiang, Xiaozhou Ye, Ye Ouyang,
Yaqin Zhang, and Yunxin Liu. Adaptivenet: Post-deployment neural architecture
adaptation for diverse edge environments. In Proceedings of the 29th Annual
International Conference on Mobile Computing and Networking, pages 1–17, 2023.

[5] Kai Huang and Wei Gao. Real-time neural network inference on extremely weak
devices: agile offloading with explainable ai. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking, pages 200–213,
2022.

[6] Rongjie Yi, Ting Cao, Ao Zhou, Xiao Ma, Shangguang Wang, and Mengwei Xu.
Boosting dnn cold inference on devices. 2023.

[7] Rendong Liang, Ting Cao, Jicheng Wen, Manni Wang, Yang Wang, Jianhua Zou,
and Yunxin Liu. Romou: Rapidly generate high-performance tensor kernels for
mobile gpus. In Proceedings of the 28th Annual International Conference on Mobile
Computing and Networking, 2022.

[8] Shuochao Yao, Jinyang Li, Dongxin Liu, Tianshi Wang, Shengzhong Liu, Huajie
Shao, and Tarek Abdelzaher. Deep compressive offloading: Speeding up neural
network inference by trading edge computation for network latency. In Proceed-
ings of the 18th conference on embedded networked sensor systems, pages 476–488,
2020.

[9] Yuyang Leng, Renyuan Liu, Hongpeng Guo, Songqing Chen, and Shuochao Yao.
Scaleflow: Efficient deep vision pipeline with closed-loop scale-adaptive inference.
In Proceedings of the 31st ACM International Conference on Multimedia, pages
1698–1706, 2023.

[10] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[11] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding. In
4th International Conference on Learning Representations, ICLR, 2016.

[12] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning
structured sparsity in deep neural networks. Advances in neural information
processing systems, 29, 2016.

[13] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement
learning. In 5th International Conference on Learning Representations, ICLR, 2017.

[14] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architec-
ture search. In 7th International Conference on Learning Representations, ICLR,
2019.

[15] Mengye Ren, Andrei Pokrovsky, Bin Yang, and Raquel Urtasun. Sbnet: Sparse
blocks network for fast inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8711–8720, 2018.

[16] Thomas Verelst and Tinne Tuytelaars. Dynamic convolutions: Exploiting spatial
sparsity for faster inference. In Proceedings of the ieee/cvf conference on computer
vision and pattern recognition, pages 2320–2329, 2020.

[17] Fanrong Li, Gang Li, Xiangyu He, and Jian Cheng. Dynamic dual gating neural
networks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 5330–5339, 2021.

[18] Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan Kautz, and Pavlo
Molchanov. A-vit: Adaptive tokens for efficient vision transformer. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10809–10818, 2022.

[19] Lingchen Meng, Hengduo Li, Bor-Chun Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang
Jiang, and Ser-Nam Lim. Adavit: Adaptive vision transformers for efficient image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12309–12318, 2022.

[20] Yongming Rao, Zuyan Liu, Wenliang Zhao, Jie Zhou, and Jiwen Lu. Dynamic
spatial sparsification for efficient vision transformers and convolutional neural
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

[21] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang.
Dynamic neural networks: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[22] Muyang Li, Ji Lin, Chenlin Meng, Stefano Ermon, Song Han, and Jun-Yan Zhu.
Efficient spatially sparse inference for conditional gans and diffusion models.
Advances in Neural Information Processing Systems, 35:28858–28873, 2022.

[23] Zihao Yu, Haoyang Li, Fangcheng Fu, Xupeng Miao, and Bin Cui. Fisedit: Accel-
erating text-to-image editing via cache-enabled sparse diffusion inference. arXiv

preprint arXiv:2305.17423, 2023.
[24] NVIDIA. Nvidia cusparse, 2023. URL https://docs.nvidia.com/cuda/cusparse.
[25] Carl Yang, Aydın Buluç, and John D Owens. Design principles for sparse matrix

multiplication on the gpu. In Euro-Par 2018: Parallel Processing: 24th International
Conference on Parallel and Distributed Computing, Turin, Italy, August 27-31, 2018,
Proceedings, pages 672–687. Springer, 2018.

[26] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu,
Yajuan Wang, Endong Wang, Qing Zhang, Bo Shen, et al. Intel math kernel
library. High-Performance Computing on the Intel® Xeon Phi™: How to Fully
Exploit MIC Architectures, pages 167–188, 2014.

[27] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An
automated {End-to-End} optimizing compiler for deep learning. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages
578–594, 2018.

[28] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, et al. Learning to optimize halide with tree search and random programs.
ACM Transactions on Graphics (TOG), 38(4):1–12, 2019.

[29] NVIDIA. Nvidia cudnn, 2024. URL https://developer.nvidia.com/cudnn.
[30] TFLite. Tensorflow lite, 2024. URL https://www.tensorflow.org/lite.
[31] Ningxin Zheng, Huiqiang Jiang, Quanlu Zhang, Zhenhua Han, Lingxiao Ma,

Yuqing Yang, Fan Yang, Chengruidong Zhang, Lili Qiu, Mao Yang, et al. Pit:
Optimization of dynamic sparse deep learning models via permutation invariant
transformation. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 331–347, 2023.

[32] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J
Dally. Exploring the granularity of sparsity in convolutional neural networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 13–20, 2017.

[33] Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr,
Michael Goin, William Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh.
Inducing and exploiting activation sparsity for fast inference on deep neural
networks. In International Conference on Machine Learning, pages 5533–5543.
PMLR, 2020.

[34] Benjamin Graham, Martin Engelcke, and Laurens Van Der Maaten. 3d semantic
segmentation with submanifold sparse convolutional networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 9224–9232,
2018.

[35] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Ama-
rasinghe. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):1–29, 2017.

[36] Ryan Senanayake, Changwan Hong, Ziheng Wang, Amalee Wilson, Stephen
Chou, Shoaib Kamil, SamanAmarasinghe, and Fredrik Kjolstad. A sparse iteration
space transformation framework for sparse tensor algebra. Proceedings of the
ACM on Programming Languages, 4(OOPSLA):1–30, 2020.

[37] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. Sparsetir: Com-
posable abstractions for sparse compilation in deep learning. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3, pages 660–678, 2023.

[38] Ningxin Zheng, Bin Lin, Quanlu Zhang, Lingxiao Ma, Yuqing Yang, Fan Yang,
Yang Wang, Mao Yang, and Lidong Zhou. {SparTA}:{Deep-Learning} model
sparsity via {Tensor-with-Sparsity-Attribute}. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22), pages 213–232, 2022.

[39] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li, Vin Sharma,
Zachary Tatlock, and Yida Wang. Nimble: Efficiently compiling dynamic neural
networks for model inference. Proceedings of Machine Learning and Systems, 3:
208–222, 2021.

[40] Kai Zhu, WY Zhao, Zhen Zheng, TY Guo, PZ Zhao, JJ Bai, Jun Yang, XY Liu,
LS Diao, and Wei Lin. Disc: A dynamic shape compiler for machine learning
workloads. In Proceedings of the 1st Workshop on Machine Learning and Systems,
pages 89–95, 2021.

[41] Pratik Fegade, Tianqi Chen, Phillip Gibbons, and ToddMowry. Cortex: A compiler
for recursive deep learning models. Proceedings of Machine Learning and Systems,
3:38–54, 2021.

[42] Chen Zhang, Lingxiao Ma, Jilong Xue, Yining Shi, Ziming Miao, Fan Yang, Jidong
Zhai, Zhi Yang, and Mao Yang. Cocktailer: Analyzing and optimizing dynamic
control flow in deep learning. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23), pages 681–699, 2023.

[43] Bojian Zheng, Ziheng Jiang, Cody Hao Yu, Haichen Shen, Joshua Fromm, Yizhi
Liu, Yida Wang, Luis Ceze, Tianqi Chen, and Gennady Pekhimenko. Dietcode:
Automatic optimization for dynamic tensor programs. Proceedings of Machine
Learning and Systems, 4:848–863, 2022.

[44] Hongyu Zhu, Ruofan Wu, Yijia Diao, Shanbin Ke, Haoyu Li, Chen Zhang, Jilong
Xue, Lingxiao Ma, Yuqing Xia, Wei Cui, et al. {ROLLER}: Fast and efficient
tensor compilation for deep learning. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages 233–248, 2022.

434

https://docs.nvidia.com/cuda/cusparse
https://developer.nvidia.com/cudnn
https://www.tensorflow.org/lite

SenSys ’24, November 4–7, 2024, Hangzhou, China R. Liu et al.

[45] NVIDIA. Filling the performance gap in convolution implementations for nvidia
gpus, GTC Silicon Valley-2019. URL https://developer.nvidia.com/gtc/2019/video/
s9218.

[46] Daniel Peter Playne and Ken Hawick. A new algorithm for parallel connected-
component labelling on gpus. IEEE Transactions on Parallel and Distributed
Systems, 29(6):1217–1230, 2018.

[47] Mark Harris et al. Optimizing parallel reduction in cuda. Nvidia developer
technology, 2(4):70, 2007.

[48] Andreas Krause and Daniel Golovin. Submodular function maximization.
Tractability, 3(71-104):3, 2014.

[49] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis
of approximations for maximizing submodular set functions—i. Mathematical
programming, 14:265–294, 1978.

[50] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor
programs. Advances in Neural Information Processing Systems, 31, 2018.

[51] Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. Adatune: Adaptive tensor
program compilation made efficient. Advances in Neural Information Processing
Systems, 33:14807–14819, 2020.

[52] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Es-
maeilzadeh. Chameleon: Adaptive code optimization for expedited deep neural
network compilation. In 8th International Conference on Learning Representations,
ICLR, 2020.

[53] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness. In Proceedings of the 36th
annual international symposium on Computer architecture, pages 152–163, 2009.

[54] NVIDIA Corporation. CUDA Toolkit Documentation, 2023. URL https://developer.
nvidia.com/cuda-toolkit.

[55] Khronos OpenCL Working Group. The OpenCL Specification, 2023. URL https:
//www.khronos.org/opencl/.

[56] Design Guide. Cuda c++ best practices guide. 2020.

[57] NVIDIA. Cuda warps and occupancy, 2011. URL https://on-
demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_
WarpsAndOccupancy.pdf.

[58] Vasily Volkov. Understanding latency hiding on GPUs. University of California,
Berkeley, 2016.

[59] Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song Han. Torchsparse:
Efficient point cloud inference engine. Proceedings of Machine Learning and
Systems, 4:302–315, 2022.

[60] Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolu-
tional neural networks for document processing. In Tenth international workshop
on frontiers in handwriting recognition. Suvisoft, 2006.

[61] XiaoMi. Mobile ai compute engine, 2023. URL https://github.com/XiaoMi/mace.
[62] XiaoMi. Mace operator list, 2023. URL https://mace.readthedocs.io/en/latest/

user_guide/op_lists.html.
[63] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

[64] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects
in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer,
2014.

[65] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (voc) challenge. International
journal of computer vision, 88:303–338, 2010.

[66] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-
zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The
cityscapes dataset for semantic urban scene understanding. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 3213–3223,
2016.

435

https://developer.nvidia.com/gtc/2019/video/s9218
https://developer.nvidia.com/gtc/2019/video/s9218
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
https://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
https://on-demand.gputechconf.com/gtc-express/2011/presentations/cuda_webinars_WarpsAndOccupancy.pdf
https://github.com/XiaoMi/mace
https://mace.readthedocs.io/en/latest/user_guide/op_lists.html
https://mace.readthedocs.io/en/latest/user_guide/op_lists.html

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Spatial Sparsity in DNNs
	2.2 Practical Gaps for Spatial Sparsity
	2.3 Related Works

	3 DynaSpa Design
	3.1 DynaSpa Representation
	3.2 PolyKernel Auto-Scheduler
	3.3 Analytical Performance Model
	3.4 DynaSpa Runtime

	4 Implementation
	5 Evaluation
	5.1 Single Operator Benchmark
	5.2 End-to-End Network Benchmark
	5.3 Search Time & Overhead

	6 Discussion
	7 Conclusion
	8 Disclaimer
	9 Acknowledgements
	References

